写点什么

联邦学习全球首个工业级开源框架 FATE 完成重大更新:全球首次支持纵向联邦神经网络算法

  • 2020-01-19
  • 本文字数:1742 字

    阅读完需:约 6 分钟

联邦学习全球首个工业级开源框架FATE完成重大更新:全球首次支持纵向联邦神经网络算法

近两年来,联邦学习发展迅速,其作为分布式的机器学习范式,能够有效解决数据孤岛问题,让参与方在不共享数据的基础上联合建模,从技术上打破数据孤岛,实现 AI 协作。而 FATE 作为联邦学习全球首个工业级开源框架,支持联邦学习架构体系,为机器学习、深度学习、迁移学习提供了高性能联邦学习机制。此外,其自身还支持多种多方安全计算协议,如同态加密、秘密共享、哈希散列等,具有友好的跨域交互信息管理方案。


近日,全球首个联邦学习工业级开源框架 FATE 1.2 版本正式发布,在该版本中,FATE 推出了两大重量级的更新项,分别为对纵向联邦 DNN 的支持以及对多方安全计算 SPDZ 协议的支持。作为首个支持纵向联邦神经网络算法的版本,开发者在纵向联邦建模的分类、回归、排序等场景下都可以明显感受到其支持性。而 SPDZ 秘密共享安全计算协议的的支持,进一步拓展和丰富了 FATE 的应用场景。


在之前的 1.0 大版本中,FATE 上线了首个可视化联邦学习产品与联邦 pipeline 生产服务。而在 1.1 大版本中,FATE 联合 VMware 中国研发开放创新中心云原生实验室联合发布了 KubeFATE 项目,通过把 FATE 的所有组件用容器的形式封装,实现了使用 Docker Compose 或 Kubernetes(Helm Charts)来部署。前两个版本分别在可视化使用体验及部署体验上做了重点提升,而 FATE v1.2 版本则回归至算法本身,进一步拓展其支持性。除两大重量级更新项以外,还新增了如二阶优化方法-纵向 SQN、数据管理模块等功能,前者能够显著提升纵向逻辑回归和纵向线性回归收敛效率,对算法加速起到关键作用。后者则用于记录 upload 的数据表及 Job 运行中模型的输出结果,并提供查询以及清理 CLI,项目已开源在GitHub上。

FederatedML: 开启纵向联邦深度学习和多种多方安全计算协议支持之旅

在 FATE 1.2 版本中,首次对外发布了纵向联邦深度学习框架,开启了 FATE 对深度学习联邦化的支持,开发者可以自定义深度神经网络结构。目前版本已支持 Tensorflow, 后续会推出 PyTorch 版本,便于开发者低代价迁移 Tensorflow 和 Pytorch 的使用习惯和经验。


在这一版本中,FATE 实现了 SPDZ 秘密共享多方安全计算协议的支持,这意味在现有同态加密协议的基础上,FATE 能为开发者提供更多样化的多方安全计算协议支持。开发者们可根据自身算法的特点,自由选择适合自身算法的多方安全计算协议,联邦学习的可应用范围得到进一步拓展。值得说明的是,在纵向皮尔逊特征相关性计算算法实现中,首次使用了 SPDZ 协议。


此外,算法性能优化方面, 新版本也首次引入二阶优化算法,提出了纵向 SQN 算法,并成功应用在纵向广义线性模型中,对算法性能有显著提升。特征分箱和特征选择新增对多方 host 联邦建模的支持,开始全方位的支持多 host 场景。

FATE-Board:两大可视化支持,实用性再提升

自 1.0 版本推出 FATE-Board 以来,这一产品受到了开发者广泛好评。而在 1.2 版本中,FATE 也对 FATE-Board 再次进行了提升,新增了对联邦模式下特征相关性、以及 LocalBaseline 组件的可视化支持。前者能够直观地分析特征之间的相关性分布情况,从而帮助开发者快速进行判断与特征选择。而后者则可以让开发者将基于联邦训练的模型与基于 sklearn 训练的模型结果进行直接对比,并从可视化报告对比中得出相关结论。


此外,这一版本的 FATE-Board 在用户体验方面也有了重大的提升,如工作流、模型输出图表图形、评估曲线等,都高度优化了可视化效果及交互操作,并增强了实用性。在使用中相信能让开发者体验再上一层楼。

FATE-Flow:FATE 数据管理模块,开启数据治理之路

在 FATE 1.2 版本中,FATE 新增加了数据管理模块,这将成为开启数据治理的第一步。从这一版本开始,在整个 Job 生命周期产生的数据都有迹可循了。此外,数据管理模块提供了诸如查询、删除等常用管理命令,这也极大地增强了开发者对数据的掌控能力。


总的来说,FATE 在 1.2 这一版本中,开启了对新领域的进一步拓展。无论是对纵向联邦深度学习框架,还是多方安全计算 SPDZ 协议的支持,都是在打磨底层框架,为未来 FATE 能支持更多应用场景提供一种可能。从这一版本也可以看出,除新功能外,FATE 对已有建模组件也在持续不断的优化和改进,致力于在效率,多样性和实用性上,为开发者提供更加优质的服务体验。


详情可查阅 FATE官网项目贡献者指南。


2020-01-19 09:442515

评论

发布
暂无评论
发现更多内容

高效整理,创造灵活工作空间——iCollections for Mac 🚀🌟

柠檬与橘子

Java元注解介绍

不在线第一只蜗牛

Java

openGauss- 智能基数估计

Gauss松鼠会

opengauss

关于告警,要想做好,从这些方面着手

巴辉特

告警降噪 oncall 告警聚合 告警排班 PagerDuty

影子测试:软件测试的创新策略

FunTester

OgPhone海外云手机是什么

Ogcloud

云手机 海外云手机 tiktok云手机 云手机海外版 海外社媒运营

Proxyless的多活流量和微服务治理

京东科技开发者

京东平台内容合规的技术与挑战

京东科技开发者

一种PyInstaller中优雅的控制包大小的方法

不在线第一只蜗牛

Java JavaScript 数据库

独享代理IP有哪些优势?

IPIDEA全球HTTP

如何通过关键词搜索API接口,淘宝商品关键词搜索电商API接口揭秘

联讯数据

智谱开源 CogVideoX-5B 视频生成模型,RTX 3060 显卡可运行;曝 OpenAI 模型「草莓」今秋推出

声网

再获殊荣 | 澳鹏Appen获评2024全球数据标注领域Top领军者

澳鹏Appen

数据标注

2025杭州国际智能建筑展览会

AIOTE智博会

智能楼宇展 智能楼宇展会 智能楼宇展览会 智能楼宇博览会

流程挖掘价值实现的加速器!望繁信科技全链路解决方案惊艳刷屏

望繁信科技

数字化转型 流程挖掘 流程资产 流程智能 望繁信科技

清华大学ChatGLM大模型

霍格沃兹测试开发学社

淘宝商品详情API返回值中的商品材质与成分

技术冰糖葫芦

API Explorer API 测试 API 策略 pinduoduo API

BSC发力DEX交易量超过Solana,MEME赛道王者易主?

区块链软件开发推广运营

dapp开发 区块链开发 链游开发 NFT开发 公链开发

SD-WAN组网部署需要多久?

Ogcloud

SD-WAN 企业组网 SD-WAN组网 SD-WAN服务商 SDWAN

感谢 Fluent Editor 开源富文本首位贡献者!

OpenTiny社区

富文本 OpenTiny 开源前端

从零开始带你玩转 AI 变现公开课

霍格沃兹测试开发学社

聚焦 AI 加持下泛娱乐场景的技术革新|RTE Plus 声网城市沙龙杭州站

声网

视频审核架构实践

京东科技开发者

今日分享丨微服务架构下查询数据缓存策略

inBuilder低代码平台

微服务 数据缓存

联邦学习全球首个工业级开源框架FATE完成重大更新:全球首次支持纵向联邦神经网络算法_AI&大模型_Geek_684d95_InfoQ精选文章