写点什么

深度学习工具箱 Ludwig 使用指南:如何高效训练和测试深度学习模型?

  • 2019-07-24
  • 本文字数:2682 字

    阅读完需:约 9 分钟

深度学习工具箱 Ludwig 使用指南:如何高效训练和测试深度学习模型?

Joshua Poduska 发布了关于 Ludwig 的深度学习指南,其主要内容包括 Ludwig 的设计原则、Ludwig 实验功能和结果的输出方式以及 Joshua Poduska 对 Ludwig 从业者新手的一些经验传授。

随着深度学习方法和理念的发展,我们将看到更多像 Ludwig 这样的工具,它们将最佳实践提取到基于深层学习框架(如 TensorFlow)的代码库中,并且可以通过 Python API 访问。这将增加跨行业深度学习方法的采用,并带来令人兴奋的新深度学习应用。

介绍

新的工具不断被添加到深度学习生态系统中。而那些不同类型的深度学习工具在创建时总有着某些规律,在寻找这些规律的过程中,总能让人感觉到非常有趣且充实的干货体验。例如,科学家们最近创建了许多有前景且具有 Python API 的新工具,它们往往基于 TensorFlowPyTorch框架,并封装了许多深度学习最佳实践,以便数据科学家们能够提高自己的研究效率。而这其中较为显著的例子就包括 LudwigFast.ai


这篇博客文章描述了 Ludwig 的设计原则且提供了相关软件包的简要概述,同时作者以从业者的角度为 Ludwig 初学者提供了相关开发经验,例如在训练或测试深度学习模型过程中,开发者应在何时使用 Ludwig 的命令行语句以及应在何时使用 Python API。此博客还提供了一个 Jupyter Notebook 的代码示例,你可以通过 Domino 提供的托管进行下载或尝试运行 Jupyter Notebook。


登录此处访问 Ludwig 项目。

Ludwig 的设计原则

我最近参加了在旧金山 Uber HQ 举行的聚会。Ludwig 的主要架构师和维护者 Piero Molino 介绍了 Ludwig 并将 Ludwig 的“魔力”归纳为三点:


  1. 基于抽象数据类型的深度学习模型设计方法;

  2. 通过模型配置文件 YAML 定义输入输出功能;

  3. 可以聪明地使用关键参数(** kwargs)。


编者注:** kwargs 是 Python 语言中的一种关键字参数,它允许将不定长度的键值对,作为参数传递给一个函数。


我将简单解释为什么 Peiro 会这么说,不过在此之前,如果你能够预先通过 Uber工程博客查看 Ludwig 设计工作流程的图解,那么在阅读接下来的说明时,你可能会理解得更快更多。


Ludwig 可以通过抽象数据类型对深度学习模型进行设计分析并制定相应策略,使得 Uber 工程团队能够更好地整合深度学习最佳实践,以便顺利进行深度学习模型的训练、验证、测试和部署。在具有常见类型的不同数据集上,Ludwig 可以利用相同的数据进行预处理和后处理。这种抽象化概念可以延伸到编码器的应用上,编码器只是简单的深度神经网络,而深度神经网络则可以包括并行 CNN、堆叠 CNN、堆叠并行 CNN、RNN 等。当为单独任务开发出编码、解码模型时,若这种编码、解码模型符合其他任务要求且具有相同功能,则可以被重复运用于其他不同任务中。


当然,不仅专家可以使用这些深度神经网络的详细信息,新手也可以利用 Ludwig 访问成熟的默认设置进行模型训练。并且通过 YAML 文件就可以轻松地插入新的编码器、解码器和组合器。专家或中级开发者也发现使用用户指南中的可选** kwargs 在调整模型行为和超参数时具有不错的适用性。


Ludwig 允许用户训练模型、加载模型、使用此模型进行预测以及运行此模型进行实验。开发者可以通过命令行API实现这些操作。在 Ludwig 中训练模型,只需要表格数据集文件 CSV 和模型配置文件 YAML 就足以满足条件。

Ludwig 实验和输出

因为 Ludwig 的实验功能可以将所有的设计原则统一在一起,所以我们会说它抓住了 Ludwig 包的精髓。在一项实验中,Ludwig 将会创建一个中间预处理版本,并导入带有 HDF5 扩展名的表格数据文件 CSV。这就产生了第一次同一目录下使用同名表格数据文件 CSV 的情况,随之后续的实验也会运行利用这些数据。Ludwig 能够随机分割数据,并在训练集上训练模型,直到验证集的准确性无法再继续优化。实验记录和实验输出都可以在结果目录中找到,而且其中还包含了模型超参数和模型实验过程的摘要统计信息。我发现这种自动记录的功能非常有用,因为在我的工作中,每次运行软件通常就代表着模型的调整。Ludwig 的实验输出会在目录中自动记录。你可以为自己做的每一个实验命名,也可以使用默认的名称。



在利用 Ludwig 工作时,如果你对管理它自动生成的输出方式感兴趣,那么相信这个自动记录的功能肯定会对你有所帮助。将输出目录与 Git 项目同步并添加提交注释,或使用像 Domino 提供的自动重现引擎,会在让开发者在重新创建实验时节省很多时间。更为关键的一点是,Ludwig 实验能够记录项目变化以及项目的运行方式。

Ludwig 从业者提示

无论什么工具,在找出工作中利用它的最佳方式之前,都会让人感受到成长的痛苦。在本节中,我总结了自己在使用 Ludwig 过程中所学到的以及有助于新人入门的经验教训。

从业者提示 1:命令行非常适合运行实验

Ludwig 的大多数功能都可以通过命令行或 Python API 获得,但即使一些编程 API 函数在技术上是可访问的,目前却尚未能得到完全支持,就如本讨论主题中所述。相对比而言,命令行的功能就显得更加齐全,一次简单的 Ludwig 实验就可以证实这一点。即使在使用 API 时需要逐步运行,但是当通过命令行调用时,Ludwig 会自动拆分数据并在训练集上训练模型,直到验证集的准确性无法再继续优化(对我而言,这是一个很不错的功能)。


下面是通过命令行启动实验的语法示例。


ludwig experiment \--data_csv sequence_tags.csv \--model_definition_file model_definition.yaml
复制代码


另一方面,你需要通过 Python API 训练和测试自己的模型。


从业者提示 2:在某些系统上,调用命令行实现可视化有一定难度

在实现可视化显示的实验过程中,可能会令人感到棘手和失落。例如,一些基础的代码还在改进中,就像在查看可视化显示实验的结果时,需要增加保存图片的选项,而不是只显示图片。如果从 GitHub 主服务器安装 Ludwig,你将能够通过 CLI(命令行界面)实现保存图像的功能。


请参阅此处以获取有关此主题的讨论。

从业者提示 3:通过命令行进行实验,通过 API 调用实现可视化

我喜欢将 Tip1 和 Tip2 结合起来,通过命令行运行实验,并通过 Python API 调用构建可视化图形。在尝试利用命令行显示可视化图形时,虽然系统并没有进行协同工作,但是通过 API 调用而绘制好的那些可视图形都很不错。使用以下语法和输出作为示例,可以轻松地在 Jupyter Notebook 上执行命令行以及 API 的调用。


!ludwig experiment \--data_csv ../data/raw/reuters-allcats.csv \--model_definition_file ../model_definition.yaml \--output_directory ../results from ludwig import visualize visualize.learning_curves(['../results/experiment_run_7/training_statistics.json'],None)
复制代码



示例笔记,可以直接下载或通过由 Domino 提供的托管运行。


2019-07-24 17:223431
用户头像
张之栋 前InfoQ编辑

发布了 91 篇内容, 共 49.9 次阅读, 收获喜欢 159 次。

关注

评论

发布
暂无评论
发现更多内容

中粮、中交、云投等众多央国企携手用友打造世界一流人才管理体系

用友BIP

人才管理

测试开发 | 人工智能与分布式计算:驱动智能时代的强力结合

测吧(北京)科技有限公司

测试

Java、Groovy项目升级JDK 21 ASM9报错

FunTester

WAVE SUMMIT+ 2023:AI开发者之夜,共赴科技最前沿的酷炫派对!

飞桨PaddlePaddle

人工智能 深度学习 开发者 WAVE SUMMIT

BRC-20铭文代币合约质押挖矿系统开发

l8l259l3365

Java多线程系列9:读写锁

BigBang!

Java多线程

顺丰科技:打造智慧物流数据管理平台

新消费日报

湖南等保测评3家叫什么名字?分别在哪里?

行云管家

等级保护 等保测评 湖南

多功能音频处理工具:Sound Siphon最新激活版

mac大玩家j

Mac软件 音频处理工具 音频管理 音频工具

Excel可编辑PDF转化软件 PDF to Excel 最新激活版

胖墩儿不胖y

Mac软件 好用的办公软件推荐

以数据指标穿透企业经营,优化业务流程,加速企业运转

用友BIP

人才管理

数栈UI5.0设计实战|B端表单这样设计,不仅美观还提效

袋鼠云数栈

数据中台 设计 表单 表单设计

一起学Elasticsearch系列-索引管理

Java随想录

Java 大数据 Elastic Search

深入探索服装网商品详情API:实时数据获取、安全与隐私保护及商业价值实践

Noah

堡垒机的类型分类

尚思卓越

运维 堡垒机

测试开发 | 人工智能特征工程:优化模型性能的艺术

测吧(北京)科技有限公司

测试

Cisdem Video Player for mac(高清视频播放器) v5.6.0永久激活版

mac

苹果mac Windows软件 Cisdem Video Player 高清视频播放软件

IntelliJ IDEA 数据访问工具配置 Caché/M 数据库系统

HoneyMoose

测试开发 | 人工智能数据可视化:揭示数据之美、洞察智慧之源

测吧(北京)科技有限公司

测试

淘宝评价指南:字数限制、评价类型与SEO优化

tbapi

淘宝API接口 天猫API接口 淘宝商品评论接口 淘宝商品评论 天猫商品评论

测试开发 | 人工智能在大规模数据分析中的崭新征程

测吧(北京)科技有限公司

测试

低代码平台:多引擎、多应用,灵活构建企业数字化生态

天津汇柏科技有限公司

低代码

软件测试/测试开发丨Pytest测试框架-跳过用例或预期用例失败

测试人

软件测试 测试开发

鞍钢集团共和国钢铁工业长子的财务转型之路

用友BIP

财务数智化

测试开发 | 优化智能决策的前提——人工智能数据清洗与预处理

测吧(北京)科技有限公司

测试

倒计时1天!WAVE SUMMIT+ 2023将开启,五大亮点抢鲜看!

飞桨PaddlePaddle

人工智能 深度学习 开发者 WAVE SUMMIT

得物大模型平台,业务效果提升实践

得物技术

算法 技术保障

数据库内核那些事|PolarDB HTAP Serverless:打造经济易用的实时分析系统

阿里云瑶池数据库

数据库 阿里云 Serverless 云原生

深度学习工具箱 Ludwig 使用指南:如何高效训练和测试深度学习模型?_AI&大模型_Joshua Poduska_InfoQ精选文章