QCon北京「鸿蒙专场」火热来袭!即刻报名,与创新同行~ 了解详情
写点什么

深度学习在高德 ETA 应用的探索与实践

  • 2020-06-18
  • 本文字数:1687 字

    阅读完需:约 6 分钟

深度学习在高德ETA应用的探索与实践

1.导读

驾车导航是数字地图的核心用户场景,用户在进行导航规划时,高德地图会提供给用户 3 条路线选择,由用户根据自身情况来决定按照哪条路线行驶。



同时各路线的 ETA(estimated time of arrival,预估到达时间) 会直接显示给用户,这是用户关心的核心点之一。用户给定起点和终点后,我们的任务是预测起终点的 ETA,ETA 的准确率越高,给用户带来的出行体验越好。

2.基于深度学习模型的探索和实践

2.1 模型选择

传统机器学习模型在 ETA 中,比较常用的有线性回归、RF(随机森林)、GBDT(梯度提升决策树)等回归预测类模型。线性模型表达能力较差,需要大量特征工程预先分析出有效的特征;RF 通过样本随机和特征随机的方式引入更多的随机性,解决了决策树泛化能力弱的问题;GBDT 是通过采用加法模型(即基函数的线性组合),以及不断减小训练过程产生的残差来达到回归的算法。


传统机器学习模型相对简单易懂,也能达到不错的效果,但存在两个问题:


  • 模型的表达能力跟选取的特征有关,需要人工事先分析出有效的特征。

  • 没有考虑上游对下游路段的影响,产生了如丢失上下游关联信息、下游受上游影响导致的不确定性等问题。


第一个问题很好理解,深度学习模型能很好地弥补这方面。针对第二个问题,以历史速度信息选取存在的不确定性为例来说明一下,历史速度信息是一个区分周一到周日七个工作日、10 分钟间隔的历史平均时间,可以根据该路段的预计进入时间所在 10 分钟区间来选定。如下图(历史平均速度)从 0:00-24:00 的变化曲线,可以看到一天中特别是早晚高峰,速度值存在较大波动。



而在选取历史平均时间时,依赖的是预计进入时间,这个时间依赖于上游路段的预计通行时间,因此其选取存在不确定性,进而导致 ETA 计算不准确。


考虑到以上问题的存在,我们选择利用 RNN 的时间序列思想将路线中上下游路段串联起来进行路段 ETA 的预测。


另外考虑到 RNN 存在的长依赖问题,且结合实际业务情况,我们选择使用 LSTM 模型来进行建模,LSTM 的门结构具有的选择性还能让模型自行学习选择保留哪些上游的特征信息进行预测。

2.2 网络架构


上图为整个模型的框架图,主要分为两部分,使用 LSTM 模块对路线中的路段 ETA 的预测和最终使用 N 层全连接模块对累计路段 ETA 及路线各特征进行完整路线的 ETA 预测。

2.3 路段 ETA 预测


上图为各路段 ETA 预测使用的 LSTM 结构图,Xt 为路线中第 t 个路段的特征信息,主要包含对应的实时路况信息、历史路况信息、路段的静态特征等。


LSTM 本是输入时间序列数据的模型,我们利用该思想,将路线中各路段序列依次输入模型。

2.4 完整路线 ETA 预测

在 LSTM 模块得到累计路线 ETA 预测值后,结合该路线的静态属性,使用全连接模块将其整合成最终输出的完整路线 ETA 预测值。


路线的属性特征主要指一些人工提取的特征,如该路线的长度、导航规划发起特征日、是否早晚高峰时段等,用以加强模型在不同场景下的表达能力。


损失函数选用线性回归常用的平方形式:MSE,公式如下:



其中,N 是路线数量,ETA 路线 j 为路线 ETA,即预测值;用户实走 j 为用户在该路线的实走时间,即真值。

3.模型效果

衡量模型效果,即路线上 ETA 的预测值时,主要考虑的是准确率。一般情况下,用户对 ETA 偏长和偏短的容忍度不同,对偏长容忍度更高。比如用户要去机场,ETA 给的时间偏短 10 分钟比偏长 10 分钟对用户的损害更大。因此准确度的指标设计倾向于 ETA 偏长,定义为满足用户一定容忍范围的请求比例,即准确率作为主要衡量指标。


在北京市上的实验结果显示,ETA 准确率得到提升,MSE loss 下降比例 28.2%,效果有了明显的提升。

4.小结

本文介绍了引入深度学习模型,帮助建模导航规划的预估到达时间预测,成功解决了线性模型的不足,也为后续引入更多特征、进行更多探索打开了空间,如历史速度信息的不确定度、时效性、周期性、突发事件、路网结构等。


本文转载自公众号高德技术(ID:amap_tech)。


原文链接


https://mp.weixin.qq.com/s?__biz=Mzg4MzIwMDM5Ng==&mid=2247485006&idx=2&sn=b837e9658599eef64acbab11409601a7&chksm=cf4a5eadf83dd7bb73e340f31ba92c1b3aa74378829793b6d7bba98272d15f42a4509ea747a9&scene=27#wechat_redirect


2020-06-18 10:002122

评论

发布
暂无评论
发现更多内容

优秀程序员必备技能之如何高效阅读源码

中间件兴趣圈

方法论 源码解读

基于树莓派和OpenVINO的边缘计算

IT蜗壳-Tango

IT蜗壳教学 4月日更

构建基于Spring Cloud向Service Mesh框架迁移的解决方案及思路

xcbeyond

架构 云原生 Service Mesh 解决方案 引航计划

释放千行百业数据价值,华为云DAYU有一套

华为云开发者联盟

大数据 数据湖 华为云 数据价值 dayu

容器&服务: ClickHouse与k8s架构

程序员架构进阶

Kubernetes Prometheus Clickhouse 28天写作 4月日更

从金融到物联网 区块链的落地应用将如何改变世界?

CECBC

区块链

趁早

小天同学

个人感悟 成功 4月日更 恋爱 趁早

我用Rocket-API实现了开放平台

棒锤🐮

关于Go语言,你不得不知的并发模式!

博文视点Broadview

我叫小M,立志建立MySQL帝国。

yes

MySQL

starforce源码解读二:游戏入口

风翱

Unity 源码解读 4月日更

Rust从0到1-结构体-方法

rust 方法 struct 结构体 method

maven中心仓库OSSRH使用简介

程序那些事

Java maven 程序那些事

世界五百强第一的沃尔玛在用区块链做什么

CECBC

区块链

「开源免费」基于Vue和Quasar的前端SPA项目crudapi后台管理系统实战之序列号自定义组件(四)

crudapi

Vue crud crudapi 序列号 quasar

传统金融体系vs新金融体系,区块链改变了什么?

CECBC

金融

来学Python啦,用Python详细讲解温度转换器

Bob

Python Python 游戏编程 4月日更

「编程概念」融合理解函数式和面向对象

顿晓

面向对象 4月日更 函数式 融合

Angular,AngularJS 和 react

HoneyMoose

强化区块链应用 破解知识产权运营难题

CECBC

区块链

区块链给普通人带来的机会!

CECBC

区块链

知乎高赞:为什么同样是分布式架构的Kafka需要Leader而Redis不需要

中间件兴趣圈

分布式 raft 一致性 数据分片

函数

奈奈奈奈

什么是你上大学才知道的事情?

🌍

4月日更

如何在 GitHub 上选择合适的开源工具和项目

耳东@Erdong

GitHub 4月日更

场景化面试:能聊聊你对充血模型和贫血模型的理解吗?

面试官问

领域驱动设计 DDD 充血模型 贫血模型

如何只用一个小时定制一个行业AI 模型?

华为云开发者联盟

自然语言处理 AI 华为云 hdc ModelArts Pro

区块链BaaS服务平台开发,助推中小企业快速落地

13828808769

区块链+ #区块链#

7.1 Go语言从入门到精通:Cobra介绍

xcbeyond

cobra Go 语言 4月日更

并发的HashMap为什么会引起死循环?

Java小咖秀

容器 hashmap 并发

文字识别:关键信息提取的3种探索方法

华为云开发者联盟

深度学习 文字识别 图结构 关键信息提取 栅格

深度学习在高德ETA应用的探索与实践_AI&大模型_高德技术_InfoQ精选文章