大幅降低存储成本,Elasticsearch可搜索快照是如何办到的?

2020 年 12 月 16 日

大幅降低存储成本,Elasticsearch可搜索快照是如何办到的?

Elasticsearch 7.10 版本最近发布,该版本有一个重磅特性:Searchable snapshots (可搜索快照功能),可以大幅度地降低存储成本。那么 Searchable snapshots 的使用方式和实现效果是怎样的呢,下面就让我们来一探究竟吧!


一、功能介绍


在 Searchable snapshots 可搜索快照功能发布之前,通过调用 _snapshot API 对索引打的快照,不管是存储在 S3 还是 HDFS 或者是腾讯云的对象存储 COS 上,都是不能够直接进行查询的。


快照只能用于数据的冷备份,如果要查询的话需要先调用 API 把快照恢复到集群中,当快照中的索引初始化完成后,才可以去查询。


而可搜索快照功能就使得存储在远端 S3、HDFS、COS 中的快照能够满足查询的需求了,ES 的数据文件不是只能存储在本地文件系统上,还可以支持存储在远端的 S3、HDFS、COS 等存储介质上,实际上实现了存储与计算的分离。


Searchable snapshots 可搜索快照功能预计会给 ES 带来新的繁荣,因为有非常多的用户使用 ELK 架构构建日志系统。日志的数据量是非常大的,但是查询的频率一般比较低,所以用户的痛点是:在满足基本查询需求的条件下同时降低 ES 的存储成本。


现在基于 Searchable snapshots 可搜索快照功能,可以把大量的比较旧的索引都存储到 S3/COS 上,真正需要查询的时候可以去查询 S3/COS 中的数据。因为 S3/COS 本身成本是非常低的,大约只有 SSD 磁盘的十分之一,所以使用 ES 存储数据的成本大大降低了。


另外一方面,可搜索快照功能也可以提高集群的稳定性,可以仅仅使用一个较小规模的集群支撑最近一段时间热索引的读写即可,老的索引都可以存放在 S3/COS 中,真正需要查询的时候再去查 S3/COS 中的数据,因为集群规模小,不至于出现一个超大规模的集群存储所有的数据,从而导致集群不稳定的现象发生。



不过就当前 7.10 版本的可搜索快照功能的特点来看,没有我们预想的可以完全实现存储计算分离。


因为当把一个存储在 S3/COS 上的快照 mount 到一个集群中时,需要先执行快照恢复,把快照中的文件从 S3/COS 读取到集群的本地磁盘上,快照中的索引先进行初始化,索引所有的数据文件恢复完毕后该索引才变为 green。


看起来和我们手动去从快照中恢复索引没有什么两样,区别在于 Searchable snapshots 可搜索快照功能时,在执行快照恢复的这段过程中索引仍然是可以查询的。如果集群本地磁盘上的索引文件不存在的话就直接去 S3/COS 中去读,只不过读的过程会比较慢。


而为什么需要先把数据文件从 S3/COS 恢复到本地呢?官方的解释是这样可以保证查询性能,在一个可搜索快照中的索引完全初始化完成后,读取该索引和读取普通的索引的性能几乎没有差别。实际上可搜索快照类型的索引在集群的本地磁盘上存放了完整的一份数据文件,只不过命名规则和普通的索引不一样。


因为当前 7.10 版本的可搜索快照功能,数据还需要从 S3/COS 中恢复到集群的本地磁盘上缓存一份,所以该功能真正的用处在于可以节省最多一半的存储空间。可搜索快照类型的索引在集群中默认副本数为 0, 数据的可靠性以及弹性完全交由 S3/COS 来保证,不需要额外给索引增加副本,从而可以降低一半的存储成本。


当集群中可搜索快照类型的索引的分片因为节点故障不可用时, ES 会自动地从 S3/COS 中读取分片对应的数据文件进行恢复,从而保证数据的可靠性;如果需要提高可搜索快照类型的索引的副本数量,也是直接从 S3/COS 中读取数据,而不是从本地磁盘上复制主分片的数据文件。


利用当前版本的可搜索快照功能,我们可以对一些老的查询频率非常低的索引,先备份到 S3/COS,之后删除,然后再把备份好的快照 mount 到集群中,使得这些索引下需要的时候仍然可以查询。


在极端情况下,实际上只需要对这些老的查询频率非常低的索引,只进行备份,真正需要查询的时候再 mount 到集群上,当然,需要容忍缓慢的查询过程。



当前 7.10 版本的可搜索快照功能的为 Beta 版,社区里也给出了该功能的路线图,会在将来的版本中实现完全的计算存储分离,直接去访问 S3/COS 中的索引数据完成查询, 而不是像当前这个版本需要先恢复到本地磁盘中。


所以总的来说,当前 7.10 版本的可搜索快照功能,一方面可以降低一半左右的存储空间,大大的节省了成本;另外一方面保证了从快照中恢复到集群上的索引的查询性能,使得应用层不必感知到这种新的存储方式带来的变化。


二、使用方式


可搜索快照的使用方式比较简单,我们可以选择通过手动调用 API 来把远端的快照 mount 到集群中,也可以在 ILM 中 使用。


1. 手动 munt 快照


直接调用 API:


POST /_snapshot/my_repository/my_snapshot/_mount?wait_for_completion=true{  "index": "test",   "renamed_index": "test1",   "index_settings": {     "index.number_of_replicas": 0  },  "ignored_index_settings": [ "index.refresh_interval" ] }
复制代码


上述操作把快照 my_snapshot 中的 test 索引挂载到集群中,重命名为 test1, 挂载后的索引副本数设置为 0, 同时忽略掉旧索引中设置的 index.refresh_interval 参数。


在执行完上述操作后,可以看到集群中出现了一个新的索引 test1, 集群当前状态为 yellow,test 索引的分片执行初始化,初始化完成后,test1 索引状态变为 green。


此时查看新索引 test1 的 settings,发现其和普通的索引有以下不同点:


{    "test1":{        "settings":{            "index": {                "blocks":{                    "write":"true"                },                "recovery":{                    "type":"snapshot_prewarm"                },                "store":{                    "type":"snapshot",                    "snapshot":{                        "snapshot_name":"test",                        "index_uuid":"p1Opq7gdQz6WTeKgiIEaTw",                        "index_name":"test-aggregation-2020-11-25-02",                        "repository_name":"my_repository2",                        "snapshot_uuid":"Muy7vsiLSWKbQf3mJALfLw"                    }                }            }        }    }}
复制代码


  • index.blocks.write 默认为 true,也即可搜索快照索引默认是只读的;

  • index.recovery.type 为 snapshot_prewarm, 意味着数据是从快照中恢复的;

  • index.store.type 为 snapshot,区别于普通索引的 fs 方式。


另外需要注意的是,索引 test1 恢复到 green 后,除了索引的部分元数据和底层的数据文件命名方式与普通的索引不同,索引自身的一些数据结构如 FST 也是常驻内存的,并不会在查询完毕后自动释放掉内存,所以此时已经和普通的索引区别不大了。当然,新索引 test1 也是可以冻结的,冻结的执行过程和普通的索引相同。


2. 在 ILM 中使用


在 ILM 索引生命周期管理中也可以使用可搜索快照功能,通过 API 使用该功能的基本用法如下:


PUT _ilm/policy/my_policy{  "policy": {    "phases": {      "cold": {        "actions": {          "searchable_snapshot" : {            "snapshot_repository" : "my_repository",            "force_merge_index": true          }        }      }     }  }}
复制代码


对于使用上述 ILM 策略的索引,在 cold phase 会首先把该索引备份到指定的快照仓库 my_repository 中,然后再把快照中的索引挂载为一个可搜索快照的索引。


使用过程中需要注意以下几点:


  • 可搜索快照只能在cold phase使用;

  • 如果 ILM 策略有配置 delete phase, 默认情况下,在 delete phase 会主动删除 cold phase 中的可搜索快照, 因此需要在 delete phase 中显式设置 delete_searchable_snapshot 为 false;

  • 默认情况下 force_merge_index 为 true, 也即在索引进入到 cold phase 时,会先把索引 force merge 到 1 个 segment,然后再备份到快照仓库中。此举一方面是为了降低存储到 S3/COS 上的存储成本,同时降低后续从 S3/COS 中拉取数据时的产生的费用,文件越少读取 S3/COS 产生的费用就越低;另外一方面当数据从 S3/COS 恢复到本地后,也可以获得较好的查询性能。


比较遗憾的是,在当前 7.10 版本中,还不支持直接在 kibana 的索引生命周期管理页面中通过操作界面直接使用可搜索快照功能。



三、未来展望


Searchable snapshots 可搜索快照功能,在当前 Beta 版本中,仍然需要把存储在远端 S3/COS 中的数据恢复到本地缓存起来,所以可以节省的存储成本是有限的。所以,官方也给出了可搜索快照功能的路线图:



结合 Data tiers 数据分层功能我们看到,当前 Beta 版的可搜索快照是用在数据分层的 Cold 层,在该层中的索引一般是只读的,但是仍然需要保证一定的查询性能。


所以在 Cold 层可以把数据先从 S3/COS 中恢复到集群的本地磁盘上,做一层缓存,查询索引的时候优先从本地缓存中读取,这样查询性能就有了保证。


但是数据的可靠性或者弹性可以完全由 S3/COS 来保证,因此在 Cold 层中的索引,可以只保留主分片,当主分片所在的节点故障时可以从远端的 S3/COS 中恢复数据,这样存储成本就降低了一半。


而官方未来的规划,是要开发 Frozen 层,在该层中的索引,对查询性能没有较高的要求,因此可以直接去查询 S3/COS 中的数据,而不需要再把数据从 S3/COS 中恢复到本地缓存起来。


因此在 Frozen 层,才真正实现了存储与计算的分离,带来的影响是不可估量的,因为一个集群能够支撑的数据存储量可以无限大,用户的成本可以大大的降低。


然而,在 Frozen 层,直接去查询存储在 S3/COS 上的数据,查询性能就完全取决于 S3/COS 的 API 接口的性能,可能会造成查询过程非常缓慢。


而在早先的版本中,ES 已经实现了异步查询 Async search, 提交查询请求时只返回一个 ID, 后续通过轮询这个 ID 获取到查询结果,在轮询过程中可以获取到查询的部分结果,直至查询结果完全返回。因此 Async search 就解决了在 Frozen 层因为查询数据缓慢带来的的体验效果不好的问题。


所以,在将来 Frozen 层开发完成之后,我们可以借助于完全实现存储于计算分离的可搜索快照功能,根据需要从 S3/COS 中去查询数据,真正做到按需加载。查询完毕后,此次查询而加载的内存数据将会自动释放,不仅节省了大量的存储成本,也因为集群的规模可以变得非常小而使得集群的稳定性大大地提高。


总的来说,不光是 Searchable sanpshots 功能,还有 Data tiers 数据分层功能,都还在逐渐演进的路上,两者结合起来,将会给 Elasticsearch 带来革命性的变革!



头图:Unsplash

作者:高斌龙 - 腾讯云大数据研发工程师

原文大幅降低存储成本,Elasticsearch可搜索快照是如何办到的?

来源:云加社区 - 微信公众号 [ID:QcloudCommunity]

转载:著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。


2020 年 12 月 16 日 19:261275
用户头像
云加社区 腾讯云官方开发者社区

发布了 206 篇内容, 共 18.3 次阅读, 收获喜欢 103 次。

关注

评论

发布
暂无评论
发现更多内容

111

不在调上

数字货币交易所源码开发,区块链交易系统搭建服务商

13530558032

2020年7月云主机性能评测报告

BonreeAPM

云计算 测试 公有云 评测 排行榜

为了写一份MyBatis学习笔记,腾讯T4大牛竟然每天熬夜到凌晨三点

Java成神之路

Java 编程 程序员 面试 mybatis源码

USDT支付系统开发技术方案,数字货币承兑商支付

13530558032

Spring Cloud 微服务实践(0) - 开篇闲话

xiaoboey

微服务 Spring Cloud Spring Boot Spring Framework

LeetCode题解:622. 设计循环队列,使用数组,JavaScript,详细注释

Lee Chen

LeetCode 前端进阶训练营

如何进步神速

Sean

学习 个人成长

大数据下单集群如何做到2万+规模?

华为云开发者社区

大数据 集群

最新:央行副行长详解数字人民币,信息量巨大!

CECBC区块链专委会

人民币 数字人民币

高速路二维码报警定位系统开发,二维码报警定位功能

13530558032

危与机并存 保险业如何走好线上线下业务并举转型之路?

BonreeAPM

运维 监控 保险 AIOPS 系统

Java 基础语法

InfoQ_34a83d636158

直播倒计时|30分钟带你解锁“技术写作”新技能

小红豆

技术 写作 直播 技术创作 RTC征文大赛

python——自定义序列类

菜鸟小sailor 🐕

一次旅途

GongTeng95

CentOS 7 安装 Python 3.7

wong

Python

不想搞Java了,4年经验去面试10分钟结束,现在Java面试为何这么难

Java架构师迁哥

Spring Cloud 微服务实践(1) - 用Initializr初始化

xiaoboey

Spring Cloud Eureka Gateway Hoxton

血的教训!千万别在生产使用这些 redis 指令

云流

redis 学习 编程 程序员

架构师训练营结业作业

superman

活着

GongTeng95

算法大赛评委亲授通关秘籍,报名倒计时!

易观大数据

裳雨

GongTeng95

写作 写作平台

数字货币量化交易,量化对冲搬砖系统开发

13530558032

实践案例丨云连接CC实现跨区域多VPC与线下IDC Server互联

华为云开发者社区

云服务 IDC

UML练习1-食堂就餐卡系统设计

博古通今小虾米

UML

2020年8月北京BGP机房网络质量评测报告

BonreeAPM

测试 机房 评测 排行榜 IDC

在线游戏,如何把握住1个亿以上的DAU?

BonreeAPM

运维 监控 AIOPS 系统 用户体验

一次压缩引发堆外内存过高的教训

AI乔治

Java kafka JVM

Spring Cloud 微服务实践(2) - Gateway重试机制

xiaoboey

maven Spring Cloud Gateway modules 重试

解读2020之年终技术盘点特辑

解读2020之年终技术盘点特辑

大幅降低存储成本,Elasticsearch可搜索快照是如何办到的?-InfoQ