写点什么

如何整合 RI 续购日期

  • 2019-09-29
  • 本文字数:2416 字

    阅读完需:约 8 分钟

如何整合RI续购日期

需求背景

看过以前四篇文章的介绍,作为一个云平台的管理人员,我想你应该非常熟悉如何做年度的 EC2 实例优化了,那么下面你一定会根据优化结果开始准备购买下一年的 RI 了。但是在很多企业中,由于的历史原因,并不是所有的 RI 都是在同一天购买的,也就是说,RI 的到期日分布在不同的月份和不同的日子,这样一批一批的购买是不是很繁琐呢?你也许会脑洞大开的想,我能不能选择日期临近的 RI 合并一起购买呢?这样就可以通过逐步减少购买 RI 的批次从而逐步增加每个批次的数量,合并以后可以省去很多麻烦。


但是选择在哪一天集中购买会更加经济呢?仔细想想,并不是每天的成本都是一样的。我们举个例子,你有 30 个 EC2 instance,最早过期日和最晚过期相差 2 个月,一共有 6 个批次。那么究竟选择哪一天集中购买最划算呢?

方案概述

要计算出哪一天购买最划算,我们需要分析一下我们所做决定的成本构成:


假设我们选择在第 X 天购买,对于任何一个 EC2, 在整个批次的 RI 购买周期内(从最早 RI 到期日至最晚 RI 到期日)有以下三部分成本:


  1. 原有机型 RI 的成本,


假设原有的 RI 在第 Y 天到期,如果在第 X 天购买新的 RI,则浪费了:


(X-Y)* 原有机型 RI 每日成本


如果 X-Y<=0, 则这部分成本为 0


2.新机型 RI 的成本


(RI 购买周期-X)*新机型 RI 每日成本


如果(RI 购买周期-X)<=0,则这部分成本为 0


3.On-Demand 成本


假设原有机型 RI 在第 Y 天到期,而我们在第 X 天购买了新机型的 RI,则从第 Y 天到第 X 天会以 On-Demand 的价格收取原有机型的费用


(Y-X)*原有机型 On-Demand 每日价格


如果 Y-X<=0, 则这部分成本为 0


我们要做的就是将每台 EC2 的这三部分成本加起来,选择一个合适的日子,使这三部分的成本之和最小。


我们使用第三篇文章介绍的优化方法生产的优化结果文件作为输入,输入的 Excel 的每条记录需要包含如下信息:


ri_expired_datetarget_pricesource_pricesource_ondemand


ri_experied_date:源系统 EC2 RI 的到期日(日期类型)


target_price:目标 EC2 的一年标准 RI 实例价格


source _price:源 EC2 的一年标准 RI 实例价格


source _ondemand:源 EC2 的 On-Demand 实例价格(每小时)


示例输入文件的格式如下:



上面的结果显示总计有 52 台服务器,原来分了 7 个批次购买 RI,最早到期日是 5 月 21 日,最晚到期日是 6 月 12 日。我们要计算的是如果这 52 台服务器今年一起购买 RI,那么在哪一天购买最划算?


下面这个 Python 程序(ri_plan.py)就是根据上述方案阐述的思路编写的,可以很好地解决这个问题。


import pandas as pd
from datetime import *
from datetime import date
from datetime import datetime

table = pd.read_excel("blog5_output.xlsx")
start_day = min(table['ri_expired_date']).date()
end_day = max(table['ri_expired_date']).date()
duration = (end_day - start_day).days
total_item = table.shape[0]
cost = []
for x in range(0, duration + 1):
sub_total = 0
for i in range(0, total_item):
current_item_date = (table.loc[[i]].ri_expired_date)[i].date()
# old price duration
op_day = ((current_item_date - start_day).days) - x
# on demand price duration
od_day = x - ((current_item_date - start_day).days)
# new price duration
np_day = (duration - x)
if op_day < 0:
op_day = 0
if od_day < 0:
od_day = 0
sub_total += ((table.loc[[i]].source_price)[i] / 365 * op_day + (table.loc[[i]].target_price)[i] / 365 * np_day + (table.loc[[i]].source_ondemand) * od_day * 24)[i]
cost.append(sub_total)
optimize_cost = min(cost)

print("{} {}".format(' Date', ' Cost'))
for i in range(0, len(cost)):
if cost[i] == optimize_cost:
recommand_date = start_day + timedelta(days=i)
current_date = start_day + timedelta(days=i)
current_date = datetime.combine(current_date, datetime.min.time())
print("{} {:.2f}".format(current_date.strftime('%Y-%m-%d'), cost[i]))
print ('\nRecommanded date to buy RI is {}'.format(recommand_date))
复制代码


运行后的结果如下:


$ python ri_plan.py    Date       Cost2019-05-21   135170.432019-05-22   129999.902019-05-23   124917.962019-05-24   119982.302019-05-25   115046.642019-05-26   110110.982019-05-27   105175.322019-05-28   100239.652019-05-29   102823.482019-05-30   105407.302019-05-31   107991.122019-06-01   110574.952019-06-02   113158.772019-06-03   115742.592019-06-04   118326.422019-06-05   127722.572019-06-06   137703.242019-06-07   147683.912019-06-08   157664.582019-06-09   167645.262019-06-10   177625.932019-06-11   187606.602019-06-12   197587.27 Recommended date to buy RI is 2019-05-28 
复制代码


从上述运行结果可以看出,5 月 28 日购买 RI 是最好的选择。


本文中的完整程序可从这里下载:


https://github.com/shaneliuyx/awscnprice/tree/master/examples


————


如何自动化的选择和优化EC2系列(一)利用AWS Price List API生成中国区的EC2 价格表


如何自动化的选择和优化EC2系列(二)在迁移项目中,如何自动选择最经济的EC2


如何自动化的选择和优化EC2系列(三)如何进行EC2优化,进一步优化成本


如何自动化的选择和优化EC2系列(四)如何为SAP应用选择合适的EC2


如何自动化的选择和优化EC2系列(五)如何整合RI续购日期(本博文)


作者介绍:


刘育新


AWS ProServe 团队高级顾问,长期从事企业客户入云解决方案的制定和项目的实施工作。


本文转载自 AWS 技术博客。


原文链接:


https://amazonaws-china.com/cn/blogs/china/how-to-use-ec2-combine-ri-date-seriesfive/


2019-09-29 16:30732
用户头像

发布了 1849 篇内容, 共 115.4 次阅读, 收获喜欢 78 次。

关注

评论

发布
暂无评论
发现更多内容

Alarm Clock Pro for mac(闹钟和时间管理工具) v15.5激活版

Rose

FileMaker Pro 18 Advance Mac版 数据库软件

Rose

革新技术架构,华为云DTSE助力紫藤科技迁移上云经验分享

华为云开发者联盟

数据库 sql 云原生 华为云开发者联盟 企业号2024年7月PK榜

通过 EMR Serverless Spark 提交 PySpark 流任务

阿里云大数据AI技术

大数据 spark 分布式计算 EMR

人工智能与情感分析:理解情感,驱动未来

天津汇柏科技有限公司

情感分析 人工智能’

降低大模型推理87%时延!华为云论文入选顶会USENIX ATC'24

华为云开发者联盟

人工智能 存储 华为云开发者联盟 LLM 企业号2024年7月PK榜

铜线工厂生产管理MES系统解决方案

万界星空科技

mes 万界星空科技 铜线mes 生产管理软件 铜线工厂

基于LangChain手工测试用例生成工具

测试人

软件测试

如何卸载Maxon产品?红巨星系列插件如何彻底清除

Rose

初识langchain:LLM大模型+Langchain实战[qwen2.1、GLM-4]+Prompt工程

汀丶人工智能

AI大模型

TiDB实践—索引加速+分布式执行框架创建索引提升70+倍

TiDB 社区干货传送门

7.x 实践

CVPR2024论文解读|对齐人类审美!MPS让图像生成评估更“懂你”

快手技术

开源 #大模型

解读「快意」大模型关键技术,揭秘实践中的挑战与创新

快手技术

NLP 大模型 #大模型

GPT被封锁了怎么办?轻松获取高质量的数据,训练自己的人工智能和大语言模型。

热爱编程的小白白

API Token 是什么?深入介绍与实践指南

Apifox

程序员 安全 Token API

Loopback for Mac:打造专业音频环境,一键开启高效录音之旅!

Rose

国内大模型LLM选择以及主流大模型快速使用教程[GLM4/Qwen/Baichuan/Coze/Kimi]

汀丶人工智能

AI大模型

tidb源码研究分析日常碰到的bug

TiDB 社区干货传送门

TiDB 源码解读 6.x 实践 TiKV 源码解读

tidb7.5.1压测

TiDB 社区干货传送门

性能测评 7.x 实践

Pgsql 全量+增量迁移 tidb7.5

TiDB 社区干货传送门

7.x 实践

Autodesk AutoCAD 2021中文版详细图文安装教程 mac/win

Rose

什么?for循环也会出问题?

阿里技术

for循环 故障排查

基于 Three.js 的 3D 模型加载优化

vivo互联网技术

rust webassembly 3D模型 three.js web3d

降成本,提人效:火山引擎VeDI实验平台架构升级

字节跳动数据平台

大数据 A/B 测试 数字化增长

玳数科技集成 Flink CDC 3.0 的实践

Apache Flink

大数据 flink Flink CDC chunjun

FinClip 强势登陆 AWS Marketplace,全球扩展战略迈出关键一步

FinClip

基于LangChain手工测试用例生成工具

测吧(北京)科技有限公司

测试

Parallels Desktop虚拟机 联网失败和不能连接USB设备解决方法

Rose

【第七在线】智能推算辅助选品组货 驱动零售品牌业绩增长

第七在线

星辰考古:TiDB v4.0 进化前夜

TiDB 社区干货传送门

版本升级 版本测评 新版本/特性解读

utf8mb4 默认排序规则引起的索引失效

TiDB 社区干货传送门

应用适配 数据库连接

如何整合RI续购日期_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章