写点什么

Facebook 开源框架如何简化 PyTorch 实验

  • 2020-11-07
  • 本文字数:2889 字

    阅读完需:约 9 分钟

Facebook开源框架如何简化 PyTorch 实验

简化从实验到生产的周期是现代机器学习应用中最难实现的事情之一。在市场上的深度学习框架中,Facebook 孵化的 PyTorch 因其快速建模和运行实验的灵活性,从而成为数据科学界的宠儿。然而,深度学习应用实验的许多挑战超出了特定框架的能力。数据科学家评估不同模型或超参数配置的能力,通常会受到运行这些实验所需的昂贵计算资源和时间的阻碍。几个月前,Facebook 开源了两个新工具,旨在简化 PyTorch 应用中的自适应实验:


  • Ax:是一个可访问的通用平台,用于理解、管理、部署和自动化自适应实验。

  • BoTorch:基于 PyTorch,是一个灵活的、现代的库,用于贝叶斯优化,这是一种数据高效全局优化的概率方法。


这两个工具的目标是降低 PyTorch 开发人员的进入壁垒,以便能够进行快速实验,从而为特定问题找到最佳模型。Ax 和 BoTorch 都是基于概率模型,简化了机器学习问题中对给定环境的探索。然而,这两个框架针对的是实验问题空间的不同维度。

BoTorch

BoTorch 是构建在 PyTorch 之上的贝叶斯优化(Bayesian Optimization)库。贝叶斯优化的目标是在资源有限的情况下找到问题的最优解。贝叶斯优化通常应用于机器学习算法的超参数优化、A/B 测试等黑盒优化问题,以及许多科学和工程问题。


贝叶斯优化问题试图在无需获得 的函数形式的情况下,使一些昂贵的、难以评估的黑盒函数 最大化。在这种情况下,优化技术在一系列测试点上对 进行评估,以期在少量评估后确定一个接近最优的值。为了优化 实现这一目标,贝叶斯优化方法需要一种外推信念的方法,即在我们尚未评估的点上, 看起来是什么样子的。在贝叶斯优化中,这被称为代理模型。重要的是,代理模型应该能够量化其预测的不确定性,其形式是函数值 在点 上的后验概率。



BoTorch 是 Facebook 在贝叶斯优化方面反复研究的结果,并将这些技术整合到 PyTorch 编程模型中。从概念上讲,与其他优化方法相比,BoTorch 带来了一系列独特的优势。


PyTorch 功能:BoTorch 构建在 PyTorch 框架之上,利用了原生功能,诸如自动微分、支持使用设备无关代码的高并行化现代硬件(如 GPU),以及便于交互式开发的动态计算图。


最先进的建模:BoTorch 支持 GPyTorch 中的最先进的概率建模,包括支持多任务高斯过程(Gaussian processes,GP)。可伸缩 GP、深度内核学习、深度 GP 和近似推理。


提高开发效率:BoTorch 为组合贝叶斯优化原语提供了一个简单的编程模型。具体来说,BoTorch 依赖于基于蒙特卡洛(Monte Carlo)的采集函数,这使得实现新想法变得很简单,而不必对底层模型施加限制性假设。


并行性:BoTorch 编程模型通过批处理计算对并发性和并行性进行了优化,提高了其在大型基础架构中的可扩展性。


BoTorch 设计允许 PyTorch 开发人员更改、交换或重新安排深度神经网络架构的不同组件,而无需重新构建整个图来重新训练整个模型。显然,构建低级贝叶斯优化原语是一项需要深厚专业知识水平的任务。为应对这一挑战,Facebook 决定将 BoTorch 与另一个项目进行整合,为深度学习实验提供一个简单的编程模型:Ax。

Ax

从概念上讲,Ax 是一个优化实验的平台,例如 A/B 测试、模拟或机器学习模型。Ax 提供了一个高级的、易于使用的 API 与 BoTorch 接口,允许开发人员快速地建模并运行实验。Ax 和 BoTorch 之间的关系如下图所示。虽然可以使用 BoTorch 原语实现新的优化算法,但 Ax 为调度配置、查询数据和评估结果提供了一个简单的 API。



从优化的角度来看,Ax 可以使用多臂老虎机(multi-armed bandit)优化处理离散配置(如 A/B 测试的变体),也可以使用贝叶斯优化处理连续(如整数或浮点数)值的配置。Ax 提供了一个非常可扩展的框架,允许开发人员为 PyTorch 模型定制各种实验。从编程模型的角度来看,Ax 提供了三个主要 API:


Loop API:此 API 用于同步优化循环,可以立即对试验进行评估。有了此 API,优化可以在单个调用中执行,并且在优化完成后就可以进行实验内省。


Service API:此 API 用作参数调整应用程序的轻量级服务。在这些应用程序中,试验可以并行评估,并且数据可以异步获得。


Developer API:此 API 供数据科学家、机器学习工程师和研究人员临时使用。Developer API 允许进行大量的定制和内省,并且建议计划使用 Ax 优化 A/B 测试的人员使用。


从编程模型的角度来看,LoopAPI 提供了最大程度的简单性,而 Developer API 支持最高级别的定制。使用 Loop API 实现无约束的合成 Branin 函数就像下面的代码一样简单:


from ax import optimizefrom ax.utils.measurement.synthetic_functions import braninbest_parameters, values, experiment, model = optimize(    parameters=[        {            "name": "x1",            "type": "range",            "bounds": [-5.0, 10.0],        },        {              "name": "x2",            "type": "range",            "bounds": [0.0, 10.0],        },    ],    evaluation_function=lambda p: branin(p["x1"], p["x2"]),    minimize=True,)
复制代码


Developer API 需要对 Ax 架构组件进行更深层次的操作:


from ax import *branin_search_space = SearchSpace(    parameters=[        RangeParameter(            name="x1", parameter_type=ParameterType.FLOAT, lower=-5, upper=10        ),        RangeParameter(            name="x2", parameter_type=ParameterType.FLOAT, lower=0, upper=15        ),    ])exp = SimpleExperiment(    name="test_branin",    search_space=branin_search_space,    evaluation_function=lambda p: branin(p["x1"], p["x2"]),    objective_name="branin",    minimize=True,)sobol = Models.SOBOL(exp.search_space)for i in range(5):    exp.new_trial(generator_run=sobol.gen(1))best_arm = Nonefor i in range(15):    gpei = Models.GPEI(experiment=exp, data=exp.eval())    generator_run = gpei.gen(1)    best_arm, _ = generator_run.best_arm_predictions    exp.new_trial(generator_run=generator_run)best_parameters = best_arm.parameters
复制代码


与其他实验框架相比,Ax 提供了一些明显的优势。首先,对于初学者来说,编程模型可以与 BoTorch 之外的不同优化框架一起使用。此外,Ax 实现了优化例程选择的自动化,这减轻了数据科学家在微调模型方面的工作量。最后,该框架还得到了可视化工具和基准测试套件的补充,这些工具和套件简化了优化技术的评估。


在不同的 Facebook 团队中,Ax 和 BoTorch 得到了广泛的使用。这些框架的开源可用性是对 PyTorch 生态系统的巨大补充。PyTorch 生态系统已被认为是数据科学实验中最为灵活的深度学习框架之一。随着数据科学界开始使用 Ax 和 BoTorch 进行实验,新的想法可能会被整合到这两个栈中,以缩短 PyTorch 应用程序中的实验周期。


作者介绍


Jesus Rodriguez,IntoTheBlock 首席执行官,Invector 实验室首席科学家、哥伦比亚大学客座讲师、天使投资人、作家、演讲家。


原文链接


https://medium.com/dataseries/facebooks-open-source-frameworks-to-streamline-pytorch-experimentation-4a33f0947d99


2020-11-07 08:002293
用户头像
李冬梅 加V:busulishang4668

发布了 981 篇内容, 共 586.3 次阅读, 收获喜欢 1139 次。

关注

评论

发布
暂无评论
发现更多内容

dart系列之:还在为编码解码而烦恼吗?用dart试试

程序那些事

flutter dart flutter 面向切面 aop 程序那些事 12月日更

初识JVM的内存结构

Ayue、

技术专题合集

恒源云(GPUSHARE)_CIFAR-10数据集实战:构建ResNet18神经网络

恒源云

深度学习 算法

小程序与H5适合的场景应用都有哪些

Speedoooo

ios开发 APP开发 容器安全 Andriod开发 容器应用

vCenter管理软件用什么牌子好?有哪些用处?

行云管家

虚拟化 vcenter

Camtasia视频剪辑功能详解

淋雨

Camtasia

MySQL探秘(二):SQL语句执行过程详解

程序员历小冰

MySQL 28天写作 12月日更

Linux一学就会之Centos8用户管理

学神来啦

Linux centos 运维 linux云计算

我不用“996”,更不用“007”,可我赚的就是比你多

六十七点五

软件测试 自动化测试 接口测试 测试工程师 功能测试

短视频平台的风控系统设计

Bill Zhang

分享一个从源码快速构建应用的小工具

Draven Gorden

开发者工具 开发工具 开源项目

Java和ABAP中的几种引用类型的分析和比较

汪子熙

Java 引用 28天写作 abap 12月日更

12 月亚马逊云科技培训与认证课程,精彩不容错过!

亚马逊云科技 (Amazon Web Services)

架构师 培训 认证

嚯,这款AI建模工具实在太强大了,快来pick!

百度开发者中心

AI python编辑器

周边生态|RoP 重磅发布 0.2.0 版本: 架构全新升级,消息准确性达 100%

Apache Pulsar

Java 开源 架构 云原生 Apache Pulsar

☕【并发技术系列】「多线程并发编程」技术体系和并发模型的基础探究(夯实基础)

洛神灬殇

Java 并发编程 多线程 多进程 12月日更

PackML从会到不会——命令标签(4)

陈的错题集

标准化 PackML

Sinfonia: a new paradigm for building scalable distributed systems--翻译理解【1】

Krysta

分布式 transaction Sinfonia DSM 两阶段提交改进

当我们谈论“远程开发”时,我们在谈论什么

Draven Gorden

云原生 开发者工具 开发工具 远程协作 开发环境

基于星环科技大数据平台 辽宁城市建设职业技术学院打造智慧校园

星环科技

大数据

Selenium之css怎么实现元素定位?

六十七点五

大前端 软件测试 自动化测试 接口测试 selenium

Cordova插件中JavaScript代码与Java的交互细节介绍

汪子熙

Java JavaScript 移动应用 28天写作 12月日更

云智慧正式开源运维管理平台(OMP),加速AIOps社区生态建设

云智慧AIOps社区

运维 运维监控 开源软件 运维体系 运维系统

使用工具Source Monitor测量您Java代码的环复杂度

汪子熙

Java 软件工程 28天写作 12月日更 代码复杂度

一场关于元宇宙公司之死的剧本杀

白洞计划

架构实战营 - 模块五作业

随风King

「架构实战营」

【福利】腾讯WeTest专有云解决方案,限时开放招募体验官

WeTest

模块五作业

危险游戏

架构实战营

如何在Flutter应用程序中创建不同的渐变 【Flutter专题14】

坚果

flutter 28天写作 12月日更

等保工作中常见导致测评结论为差的高风险项

行云管家

网络安全 等级保护 等保测评 等保结论

模块5作业

覃飞

Facebook开源框架如何简化 PyTorch 实验_开源_Jesus Rodriguez_InfoQ精选文章