写点什么

Facebook 开源框架如何简化 PyTorch 实验

  • 2020-11-07
  • 本文字数:2889 字

    阅读完需:约 9 分钟

Facebook开源框架如何简化 PyTorch 实验

简化从实验到生产的周期是现代机器学习应用中最难实现的事情之一。在市场上的深度学习框架中,Facebook 孵化的 PyTorch 因其快速建模和运行实验的灵活性,从而成为数据科学界的宠儿。然而,深度学习应用实验的许多挑战超出了特定框架的能力。数据科学家评估不同模型或超参数配置的能力,通常会受到运行这些实验所需的昂贵计算资源和时间的阻碍。几个月前,Facebook 开源了两个新工具,旨在简化 PyTorch 应用中的自适应实验:


  • Ax:是一个可访问的通用平台,用于理解、管理、部署和自动化自适应实验。

  • BoTorch:基于 PyTorch,是一个灵活的、现代的库,用于贝叶斯优化,这是一种数据高效全局优化的概率方法。


这两个工具的目标是降低 PyTorch 开发人员的进入壁垒,以便能够进行快速实验,从而为特定问题找到最佳模型。Ax 和 BoTorch 都是基于概率模型,简化了机器学习问题中对给定环境的探索。然而,这两个框架针对的是实验问题空间的不同维度。

BoTorch

BoTorch 是构建在 PyTorch 之上的贝叶斯优化(Bayesian Optimization)库。贝叶斯优化的目标是在资源有限的情况下找到问题的最优解。贝叶斯优化通常应用于机器学习算法的超参数优化、A/B 测试等黑盒优化问题,以及许多科学和工程问题。


贝叶斯优化问题试图在无需获得 的函数形式的情况下,使一些昂贵的、难以评估的黑盒函数 最大化。在这种情况下,优化技术在一系列测试点上对 进行评估,以期在少量评估后确定一个接近最优的值。为了优化 实现这一目标,贝叶斯优化方法需要一种外推信念的方法,即在我们尚未评估的点上, 看起来是什么样子的。在贝叶斯优化中,这被称为代理模型。重要的是,代理模型应该能够量化其预测的不确定性,其形式是函数值 在点 上的后验概率。



BoTorch 是 Facebook 在贝叶斯优化方面反复研究的结果,并将这些技术整合到 PyTorch 编程模型中。从概念上讲,与其他优化方法相比,BoTorch 带来了一系列独特的优势。


PyTorch 功能:BoTorch 构建在 PyTorch 框架之上,利用了原生功能,诸如自动微分、支持使用设备无关代码的高并行化现代硬件(如 GPU),以及便于交互式开发的动态计算图。


最先进的建模:BoTorch 支持 GPyTorch 中的最先进的概率建模,包括支持多任务高斯过程(Gaussian processes,GP)。可伸缩 GP、深度内核学习、深度 GP 和近似推理。


提高开发效率:BoTorch 为组合贝叶斯优化原语提供了一个简单的编程模型。具体来说,BoTorch 依赖于基于蒙特卡洛(Monte Carlo)的采集函数,这使得实现新想法变得很简单,而不必对底层模型施加限制性假设。


并行性:BoTorch 编程模型通过批处理计算对并发性和并行性进行了优化,提高了其在大型基础架构中的可扩展性。


BoTorch 设计允许 PyTorch 开发人员更改、交换或重新安排深度神经网络架构的不同组件,而无需重新构建整个图来重新训练整个模型。显然,构建低级贝叶斯优化原语是一项需要深厚专业知识水平的任务。为应对这一挑战,Facebook 决定将 BoTorch 与另一个项目进行整合,为深度学习实验提供一个简单的编程模型:Ax。

Ax

从概念上讲,Ax 是一个优化实验的平台,例如 A/B 测试、模拟或机器学习模型。Ax 提供了一个高级的、易于使用的 API 与 BoTorch 接口,允许开发人员快速地建模并运行实验。Ax 和 BoTorch 之间的关系如下图所示。虽然可以使用 BoTorch 原语实现新的优化算法,但 Ax 为调度配置、查询数据和评估结果提供了一个简单的 API。



从优化的角度来看,Ax 可以使用多臂老虎机(multi-armed bandit)优化处理离散配置(如 A/B 测试的变体),也可以使用贝叶斯优化处理连续(如整数或浮点数)值的配置。Ax 提供了一个非常可扩展的框架,允许开发人员为 PyTorch 模型定制各种实验。从编程模型的角度来看,Ax 提供了三个主要 API:


Loop API:此 API 用于同步优化循环,可以立即对试验进行评估。有了此 API,优化可以在单个调用中执行,并且在优化完成后就可以进行实验内省。


Service API:此 API 用作参数调整应用程序的轻量级服务。在这些应用程序中,试验可以并行评估,并且数据可以异步获得。


Developer API:此 API 供数据科学家、机器学习工程师和研究人员临时使用。Developer API 允许进行大量的定制和内省,并且建议计划使用 Ax 优化 A/B 测试的人员使用。


从编程模型的角度来看,LoopAPI 提供了最大程度的简单性,而 Developer API 支持最高级别的定制。使用 Loop API 实现无约束的合成 Branin 函数就像下面的代码一样简单:


from ax import optimizefrom ax.utils.measurement.synthetic_functions import braninbest_parameters, values, experiment, model = optimize(    parameters=[        {            "name": "x1",            "type": "range",            "bounds": [-5.0, 10.0],        },        {              "name": "x2",            "type": "range",            "bounds": [0.0, 10.0],        },    ],    evaluation_function=lambda p: branin(p["x1"], p["x2"]),    minimize=True,)
复制代码


Developer API 需要对 Ax 架构组件进行更深层次的操作:


from ax import *branin_search_space = SearchSpace(    parameters=[        RangeParameter(            name="x1", parameter_type=ParameterType.FLOAT, lower=-5, upper=10        ),        RangeParameter(            name="x2", parameter_type=ParameterType.FLOAT, lower=0, upper=15        ),    ])exp = SimpleExperiment(    name="test_branin",    search_space=branin_search_space,    evaluation_function=lambda p: branin(p["x1"], p["x2"]),    objective_name="branin",    minimize=True,)sobol = Models.SOBOL(exp.search_space)for i in range(5):    exp.new_trial(generator_run=sobol.gen(1))best_arm = Nonefor i in range(15):    gpei = Models.GPEI(experiment=exp, data=exp.eval())    generator_run = gpei.gen(1)    best_arm, _ = generator_run.best_arm_predictions    exp.new_trial(generator_run=generator_run)best_parameters = best_arm.parameters
复制代码


与其他实验框架相比,Ax 提供了一些明显的优势。首先,对于初学者来说,编程模型可以与 BoTorch 之外的不同优化框架一起使用。此外,Ax 实现了优化例程选择的自动化,这减轻了数据科学家在微调模型方面的工作量。最后,该框架还得到了可视化工具和基准测试套件的补充,这些工具和套件简化了优化技术的评估。


在不同的 Facebook 团队中,Ax 和 BoTorch 得到了广泛的使用。这些框架的开源可用性是对 PyTorch 生态系统的巨大补充。PyTorch 生态系统已被认为是数据科学实验中最为灵活的深度学习框架之一。随着数据科学界开始使用 Ax 和 BoTorch 进行实验,新的想法可能会被整合到这两个栈中,以缩短 PyTorch 应用程序中的实验周期。


作者介绍


Jesus Rodriguez,IntoTheBlock 首席执行官,Invector 实验室首席科学家、哥伦比亚大学客座讲师、天使投资人、作家、演讲家。


原文链接


https://medium.com/dataseries/facebooks-open-source-frameworks-to-streamline-pytorch-experimentation-4a33f0947d99


2020-11-07 08:002804
用户头像
李冬梅 加V:busulishang4668

发布了 1240 篇内容, 共 854.9 次阅读, 收获喜欢 1326 次。

关注

评论

发布
暂无评论
发现更多内容

谁与争锋!手机直播源码知识分享之主播PK功能

山东布谷科技

软件开发 源码搭建 手机直播源码 手机直播

陶哲轩甩出调教GPT-4聊天记录,点击领取大佬的研究助理

Openlab_cosmoplat

开源社区 GPT

个推文案圈人模型助力TT语音智选人群,实现消息推送点击率提升120%

个推

消息推送 移动开发

国企为什么要建设数智底座?

用友BIP

数智底座 Pass平台

2023年度解决方案大奖花落用友,人才发展解决方案备受瞩目

用友BIP

数智人力

国外主机引领你的网站征服全球!

一只扑棱蛾子

国外主机

智慧垃圾分类处理3D可视化系统

2D3D前端可视化开发

智慧环卫 智慧垃圾处理 智慧垃圾分类 智慧环保

2023“科创中国”大湾区青年百人会论坛即将召开

飞桨PaddlePaddle

人工智能 百度 paddle 飞桨

谷歌推出“能讲会听”的大语言模型 AudioPaLM,实现语音理解和生成

Zilliz

谷歌 AIGC 大语言模型

共建智能汽车数据管理方案 | 4.15 IoTDB X EMQ 主题 Meetup 回顾

Apache IoTDB

智能汽车 emq IoTDB

突破边界:高性能计算引领LLM驶向通用人工智能AGI的创新纪元

GPU算力

2023年,中小企业的发展新风向

互联网工科生

低代码 企业 数字化

AI时代风暴:低代码开发平台引领未来革命

不在线第一只蜗牛

人工智能 AI 低代码 数字化

国内首发|性能飙升100% 焱融全闪存储成功适配 InfiniBand 400Gbps 网络

焱融科技

#分布式文件存储 #文件存储 #全闪存储 #高性能存储

阿里云EMAS超级App助力Agmo电动车超级应用程序发布

移动研发平台EMAS

阿里云 超级app解决方案

一文了解Java低代码开发平台

互联网工科生

Java 低代码 JNPF java低代码开发平台

助力智能制造数字化转型 | 5.31 IoTDB & 中航机载制造行业客户分享会回顾

Apache IoTDB

智能制造 IoTDB 中国航天

理解 G1 GC 日志

摸鱼编程

JVM G1GC 可视化分析

浅谈全面预算在交通运输与物流行业的应用

用友BIP

全面预算

实录分享 | Alluxio Operator一体化部署方案

Alluxio

分布式 operator Alluxio 大数据 开源 容器化部署

2023年6月墨天轮中国图数据库排行榜:TGS 开新局,创邻和字节多点突破露锋芒

墨天轮

数据库 图数据库 国产数据库 NoSQL 数据库

Facebook开源框架如何简化 PyTorch 实验_开源_Jesus Rodriguez_InfoQ精选文章