QCon全球软件开发大会8折优惠倒计时,购票立减¥1760!了解详情 >>> 了解详情
写点什么

CrateDb 在携程机票 BI 的实践

2021 年 1 月 15 日

CrateDb在携程机票BI的实践

一、前言


随着整个互联网流量红利进入末期,各大厂在着力吸引新客的同时,在既有客户群体的运营上也是煞费苦心,各种提高客户体验、个性化服务的场景层出不穷。


携程机票大数据部门在实践过程中需要同步数据、选型引擎来存储处理数据,利用接口将模型结果开放给生产环境调用,因此我们的数据存储修炼之旅会涉及到接口现状、接口大道之旅、安装部署、同步数据、生产应用以及未来的趋势-如何实现容器化。这当中,我们遇到了很多问题,也解决了很多问题,本文将分享机票大数据平台在数据存储这一块的实践经验。


二、机票大数据接口现状


携程机票大数据平台接口组碰到的问题:


  • 如何存储

  • 如何查询

  • 如何维护


2.1 如何存储


机票大数据基础架构团队接口组在 2018 年之前,数据的存储方案基本是:hive、mysql、redis。以下是我们现有的存储选型:


接口需求HiveMysqlRedis
性能要求请求QPS
>1s<1
<1s<10
<500ms>100
<100ms>100


这就造成了机票大数据部门的 redis 集群内存需求暴涨,目前我们统计 redis 使用的数据:挂在机票大数据部门的 redis 集群数量有几十个,内存达到了十几个 T。当然接口的性能也达到了前所未有的快速和高效,基本都是 10ms 左右。


2.2 如何查询


Redis 的查询方式比较单一:通过唯一 key 去查询 value。这种查询方式在简单的唯一值查询中比较有效,但是当遇到,同一个数据源多关键字查询的时候,就得维护多份数据源。举例:在价格趋势的接口中,我们提供了多种价格趋势组合:国内、国际、单程、往返、航线、航班。如果使用 redis 存储,需要维护同一份数据多种 key 的存储方式,极大地浪费了存储空间。


Redis 还有一个问题是时间范围的筛选,还是在上面的价格趋势接口中,需要按照查询时间返回历史同期在一定起飞时间范围的价格数据,所以我们需要存储多个时间日期的数据(当然也可以用 set 等结构,但是会面临如何删除过期数据的问题),同时在查询的时候需要循环取一定时间范围的价格。


2.3 如何维护

1)接口维护


大数据基础平台团队一共维护了几百个接口,其中 1/3 的接口是提供数据给调用方的,这当中又有一些接口只是提供简单的查询操作,但就是这些简单的查询,需要我们提供海量的数据存储、快速精准的查询。每个接口的上线需要经过项目资源申请(包括机器资源、人员资源)、数据同步、开发、测试流程,最后才能上线。一整套流程走下来,耗费 2-3 天/人,而且基本上都是是重复性的工作。如何解放这些人力和机器资源,就变得很迫切了。


2)数据同步


提供给外部使用的数据大部分都是存储在 hive 中,在不使用 presto api 的方式访问时,我们需要将 hive 数据导入到 redis 或者 mysql 中,供接口访问。在 zeus 平台上,我们建立了各种导数据的流程,如何将这些简单、重复度高的流程自动化呢?


整个接口的架构图如下:



图 1 redis/mysql 作为主要存储的架构图


三、机票大数据接口的大道之旅


认真研究了接口调用方本身的性能,我们发现调用方在调用第三方提供的接口时,基本都是异步进行的。如果把调用方调用的所有第三方接口当成一个木桶,机票大数据基础架构团队的接口就是其中的一块木板,只要不是最短的木板,就可以在保证性能的情况下降低整个接口的响应时间(当然这不是技术上的退步,而是选择合适的方案)。通过上面的存储选型对比之后,发现在 100ms-500ms 这个性能段里面没有一个合适的存储方案能够提供。


我们调研了几种 NOSQL 数据库方案,综合存储、查询等指标发现 CrateDB 比较符合现实需求。将几种存储做了一个对比,如下:


对比RedisMongoCrateDB
查询速度<10ms100ms~500ms100ms~500ms
SQL不支持不支持支持
数据结构化不支持支持支持
存储机制hashSharding+partitionSharding+partition
资源利用内存资源硬盘+内存硬盘+内存
数据可重复使用不支持,单一固定key支持支持


3.1 CrateDB 介绍


CrateDB 是构建在 NoSQL(ElasticSearch)基础之上的分布式 SQL 数据库,它结合了 SQL 的通晓程度和 NoSQL 的可扩展性和数据灵活性:


a、使用 SQL 处理结构化或非结构化的任何类型的数据


b、以实时速度执行 SQL 查询,甚至 JOIN 和聚合


c、简单缩放


3.2 CrateDB 与接口存储


CrateDB 很好地解决了 100ms-500ms 性能段的短板,并且使用磁盘+内存的方式存储数据,减少了内存的使用。目前在我们生产时间中,通过 12 台 8 核 24G 虚拟机 30%的磁盘空间覆盖了 10 亿数据(如果是 redis 至少需要 300G 的内存,如果做 slave,容量 double)。


3.3 CrateDB 与接口查询


CrateDB 提供了如 MYSQL 的表、字段等概念(底层使用 ES 存储引擎),我们可以将同一份数据源进行多维度的操作,比如上述讲到的价格趋势里面基于航线和航班的价格趋势,这两个接口可以使用同一套数据源,因为航线的价格可以基于航班数据进行聚合操作,这样就大大减少了冗余的数据。同时类 MYSQL 表的特性使得时间范围的查询变的 so easy 了。


3.4 CrateDB 与接口维护

1)与接口结合使用


因为 CrateDB 支持标准的 SQL,我们开发了机票大数据基础平台的通用性 api 系统,通过将取数逻辑 SQL 化的方式,同时利用 qconfig api 将新增的数据需求进行模板化、配置化,统一了接口代码开发的流程。配置页面如下:



图 2 接口配置页面

2)数据同步


通过 zeus api 将同步数据流程模板化,配置页面如下图。并且在 zeus 平台上,使用 spark shell 方式将 hive 数据导入到 CrateDB 中,抛弃了以前 jar 包的方式。这种方案可以在几分钟内导入千万级的数据(取决于 CrateDB 表的数据结构,减少索引、doc_values 以及刷新间隔会都有利于导入的速度)。



图 3 zeus 流程配置页面


3)容器化


如何更加有效地管理、维护 CrateDB 集群?为此我们上了 k8s,将 CrateDB 容器化。为了更好地管理这些 k8s 集群,引入了 rancher,rancher 是开源的企业级容器管理平台,通过 rancher,我们再也不必自己去从头搭建容器服务平台。同时 rancher 提供了在生产环境中使用的管理 docker 和 kubernetes 的全栈化容器部署与管理平台。将网络、磁盘虚拟化之后,资源的利用率大大提高,减少了虚拟机的使用。自动水平扩展,以及 pod 的监控等特性,都极大地提高了维护 CrateDB 的能力,我们管理的 CrateDB 集群如下:



图 4 rancher 管理 CrateDB 集群图

3.5 与接口结合的其他优势


1)存储机制多样化,底层的存储机制支持多样化的数据类型,同时支持 partition、sharding;


2)数据结构化,CrateDB 提供结构化的展示,有利于数据的可视化以及降低非技术人员的理解难度,解决了 redis 可读性差的问题;


3)存储可靠性,数据持久化存储在磁盘上,支持 replica,相比于 redis 的内存存储更加可靠(当然 redis 也可以落盘,但这就会限制 redis 的速度);


4)成熟的优化机制,针对 es 的优化我们有丰富经验的技术人员支持。举个例子:我们有 9000 万+的用户行程数据,因为数据比较详细,字段的内容比较庞大。通过去掉部分字段的索引,去掉 doc_values 等操作将数据存储大小从 90G 降到了 30G,同时也提升了搜索速度。


目前在生产上我们部署了 2 个 CrateDB 集群,其中一个集群由 12 台 8 核 24G 内存虚拟机组成。在集群中建立了 12 个数据表,存储了 20+亿条数据,经受了生产的实际考验,接口性能指标如下:


数据量99line95lineavg查询特点描述
10亿+200ms80ms10ms多关键字、时间范围查询整个集群请求量1500qps
500w+150ms50ms10ms多关键字查询、排序单个表请求量400qps
9000w+200ms100ms60ms多关键字查询单个表请求量10qps


性能满足了大部分调用方的使用需求,同时系统数据上线的流程由以前的申请资源、开发代码、测试、上线,到现在的系统配置、测试、上线,释放了部分的开发资源,并且保证了数据的质量。接口上线时间由以前平均 2-3 天,缩短为 2-3 小时。新的接口架构图如下:



图 5 CrateDB 作为主要存储的架构图

四、安装部署


CrateDB 有官方版以及社区版,为了更好地进行自维护,我们选择了社区版(通过源码编译)。CrateDB 的部署与 ES 的部署基本一致。需要注意的是,在分配内存的时候尽量多留一些内存给系统,这将有利于数据查询速度。部署后的 webui 如下:



图 6 CrateDB webUI

五、数仓中的实现


目前在数仓中的应用主要体现在各种指标 dashboard、metrics 的展示,比如 fltinsight。与以往通过 presto 接口获取数据的方式相比,更加直接、高效。而且 CrateDB 支持各种字段的聚合、统计,是各种指标存储、展示的不二之选。当然后续数仓组也会在数据展示这一块全面推广 CrateDB 的使用。


六、小结


没有完美的存储方案,只有最适合的存储方案。通过上述机票大数据平台在数据存储这一块的实践经验,相信每个团队在面对选择存储方案的时候,结合自身需求去选择适合自己的存储技术方案,达到“大道”。


文章转载自: 携程技术(ID:ctriptech)

原文链接:CrateDb在携程机票BI的实践

2021 年 1 月 15 日 07:001089

评论

发布
暂无评论
发现更多内容

搞定 HTTP 协议(一):HTTP 与网络基础

零和幺

技术 前端 HTTP

深入理解JVM类加载机制

WANDEFOUR

类加载 深入理解JVM

面试题:教你如何吃透RocketMQ

奈学教育

架构 RocketMQ 架构设计

CEO或业务负责人应该具备的数据分析能力

花生

工具 数据 CEO

CI/CD - Python Django 项目在 Jenkins 上的实践

meta-algorithmX

Python django TDD CI/CD

撸一串趣图,给晚上加班打个鸡血

码农神说

程序员 加班 段子

运维日志里隐藏的安全危机,你知道怎么挖吗?听听专家怎么说

secisland

态势感知 关联分析 SOC

【大厂面试01期】高并发场景下,如何保证缓存与数据库一致性?

NotFound9

Java MySQL 数据库 redis 后端

深入理解ClassLoader

WANDEFOUR

类加载 深入理解JVM ClassLoader

Java是不是慢半拍?

范学雷

Java 架构 编程语言

原创 | 使用JUnit、AssertJ和Mockito编写单元测试和实践TDD (十五)编写测试-断言\假设\使测试失效

编程道与术

Java 编程 TDD 单元测试 JUnit

Hive底层执行引擎的深度剖析(免费)

奈学教育

大数据 hive

Docker 搭建 Postgres + pgAdmin 环境

姜雨生

Docker DevOps postgres

学习没进步?也许反馈有问题

KAMI

学习 认知提升

ARTS-week one

Jokky💫

ARTS 打卡计划

霸榜18年,作者连续20年获得微软MVP,这本SQL书凭什么成为畅销经典

图灵社区

数据库 SQL语法 sql查询

万恶的NPE如何避免,几种你必须知道的方案!!!

不才陈某

后端

深入理解JVM内存管理 - 方法区

WANDEFOUR

深入理解JVM 方法区 老年代

游戏夜读 | 什么是黑色一分钟?

game1night

GcExcel:比 Apache POI 速度更快、性能更高

Geek_Willie

Apache POI GCExcel

收藏!如何有效实施devops?

禅道项目管理

DevOps 运维 持续集成 开发 自动化测试

深入理解ContextClassLoader

WANDEFOUR

深入理解JVM ContextClassLoader

产品周刊 | 第 17 期(20200531)

Herbert

产品 设计 产品经理 产品设计 产品推荐

原创 | 使用JUnit、AssertJ和Mockito编写单元测试和实践TDD (十四)编写测试-显示名

编程道与术

Java 编程 TDD 单元测试 JUnit

安全做到首位 统信UOS后激勃发

统小信uos

网络安全 操作系统

Vue生成AST算法的解析

djknight

Java Vue AST

『PyTorch』使用指定GPU的方法

kraken0

人工智能 学习 图像识别

奈学大数据开发工程师分享787个技术,快来收割

奈学教育

大数据

手机是21世纪最成功的毒品

Neco.W

学习 提升效率 工作

redis持久化RDB与AOF

wjchenge

redis

啪啪,打脸了!领导说:try-catch必须放在循环体外!

王磊

Java 性能优化 性能 java编程

移动应用开发的下一站

移动应用开发的下一站

CrateDb在携程机票BI的实践-InfoQ