QCon 演讲火热征集中,快来分享技术实践与洞见! 了解详情
写点什么

客户端稳定性优化实战,Crash 率最高下降 40%

  • 2020-08-10
  • 本文字数:3729 字

    阅读完需:约 12 分钟

客户端稳定性优化实战,Crash率最高下降40%

大促一直是技术和产品的练兵场,每到大促,各种丰富的富媒体,如直播,视频,3D,游戏互动,AR 等竞相上线,在淘宝的大航母战略下,都集中在万千宠爱于一身的淘宝 App 上,在这样的大促场景下,开始触碰到端侧系统资源上限的天花板。在 17 年双 11 大促期间,端侧的内存问题尤为突显,OOM 的高居所有问题的榜首。内存问题成为了这几年大促端侧稳定性最大的挑战。



17 年双 11 Crash 问题分类



17 年双 11 Crash 走势与业务上线关系

放飞业务

两年后的今天,通过我们持续的技术挖掘与治理,内存问题不再是影响大促稳定性的最主要的因素,本次 618 大促前所未有的支持了猜你喜欢无限坑位,支持了丰富的直播和小视频玩法,支持了会场上百个运营坑位,支持了互动业务的不降级策略,各种业务花式上线的同时,我们的端侧稳定性还进一步提升,crash 率远好于去年同期。



618 期间今年与去年对比 crash 走势

迎难而上,各显神通

面对内存带来的挑战,我们 2 年以来,一直在摸索中前行,沉淀一套内存治理的经验。



面向大促,当出现了问题后,我们要去思考当前的机制与规范,于是我们制定了内存标准与业务的上线验收。同时,提供了内存分析的一套工具,方便很快很准找到问题。同时,我们制定了三套内存优化策略:


  1. 精打细算,提升内存的使用率

  2. 兜底容灾,尽量让应用延长生命

  3. 提升内存上限,突破系统的天花板

验收标准-----一夫当关

由于内存天花板的存在,从稳定性角度综合考虑,引入了大促的验收标准。标准的制定过程中,我们统计了发生 OOM 时的水位内位,分析出了高危,危险,正常水位线,以此为内存标准的制定指引。


内存问题之所以复杂,是因为内存是一个全局共享池子,当出现溢出问题时,在没有明显问题时,很难去界定哪个业务存在问题,因此,在考虑标准的时候,我们定义了两种场景。单页面及链路。


单页面场景 主要是为了减少单个业务过多的占用内存引发的风险。前面提到内存池子是全局且有限的,当单页面占据内存过多,就会导致系统整体可用的内存大幅减少,在浏览相同页面次数的情况,增加整体内存风险。


链路场景 是对常见浏览链路的内存检测,比如从首页-会场-互动-店铺-详情-下单这样的常规玩法进行多页面叠加检测,判断用户正常场景下的内存风险。


同时,在制度内存标准时,也考虑了不同技术栈之间的差异。比如 H5,weex,native,包括多 tab 的会场形式及直播,3D 等。



测试同学研发的 TMQ 自动化测试工具

内存优化三板斧

前面提到内存优化主要有三种策略,这里分开详述。

精打细算-提升内存的利用率

在业务屡屡触及内存天花板的情况下,每 1KB 的内存,都显得非常珍贵。


在实际对内存占用的分析中,我们偶尔会发现有些场景加载的图片远大于视图的大小,造成内存的浪费。或者在某些场景下,图片在内存中持有过久,比如在后台或是压栈很久后,图片所持有的空间仍不能释放出来给当前界面使用,面对这样的场景,我们在高可用体系中引用了对应的功能,能够检测出这些 case,以便把内存交给用户正在使用的组件,以此来提升内存的利用率。


从图片库的数据流转以及 View 生命周期出发,来设计图片自动回收和恢复的实现,即当 View 不可见的时候,自动释放图片到图片库缓存,只保留图片的 key 值;当 View 可见的时候,又通过 key 恢复图片。图片片自带三级缓存策略,回收后的图片如果还在缓存,能立马恢复,对体验几乎无损。


同时,针对一些内存大户,也和各业务方约定一些实例数限制,比如详情页,有大图,还带视频,webview 等,内存使用相对较大,这种情况下会对实例数做要求。目前有限制包括详情页,播放器实例等。


为了更好的体验,在降级策略上我们也做了一些优化,不再一刀切,而是根据各设备自身的能力,有选择的进行降级。要更好的达成目标,我们首先对设备进行分级,依赖于创建的智能分级。



统一降级在设备评分的基础上,提供默认的高中低端机型的设备分级能力,增加了配置化能力,为每个核心业务分配一个 orange,支持业务对系统、品牌、机型、设备分、应用版本、生效时间等多个维度进行配置化降级。


依赖于统一降级,可以做到精准的体验分级,高端机型,可以采用各种特效和高清图片,能保障最优体验。中端机型,降级掉一部分特效,可以获得较好效果,低端机型,保障稳定性和基础体验。实现 “高端设备最炫体验,低端设备流畅优先,紧急问题快速降级”



统一降级后的效果

兜底容灾–尽量延长生命周期

在应用内存最危险的时候,也许下一次的内存申请即面临崩溃,在这最危险的时候,我们是否有能力缓解一下,让用户多下一单呢,为此我们设计了内存容灾 SDK。


具体原理是基于 gc 和 lowmemorykiller 原理实现(Android 的 OOM 要区分 jvm heap 内存不足和 native 的内存不足),通过监听系统的 gc 和 lowmemorykiller,去计算系统当前所处的内存状态,当内存不足的时候,销毁掉优先级较低的 Activity,从而保障用户可见面 Activity 能尽可能多的使用内存而不出现稳定性问题。



内存容灾基本原理

扩充上限-突破系统天花板

手淘的战略一直是航母战略,前面的打法只能缓解当前的稳定性问题,只能治标,不能治本。业务技术对内存的需求有增无减,无限坑位,会场上的直播视频等,都带来进一步的压力。只有提升端内的内存容量,才是解决内存问题的最终解法。


多进程


多进程的使用是突破系统天花板的方法之一。由于大促态的变化新增以 H5 的页面居多,所以我们重点希望在 webview 上能有一些突破。这时苹果的 WKWebivew 被纳入到研究范围,关于 WKWebview 在内存的优势,经过我们的分析结论如下:


WKWebView 的内存并不计算在主应用的内存中,而是作为独立进程单独进行计算,因此对于应用来说使用 WKWebView 相比 UIWebView,应用整体可以使用更多的内存,因为 Web 的内存都在 WKWewbView 的 Web 进程中,并不影响主应用的内存上限。


对于 Android 来说,平台本身则支持的多进程方式,因此,我们最初的设计中,是依赖于 Activity 的独立进程方式,即使 BrowserActivity 独立出来。


在 99 大促的 AB 实验中,对比对照组,在访问过淘金币/互动的用户中,主进程 native crash 率下降 15%-18%,Crash 计数(主+子) 下降 1 万次以上。在所有用户中,下降 3%-5%,对内存的优化效果还是比较明显。


但是考虑到很多基础 SDK 在设计之初并没有考虑到多进程的方式,且多进程下应用的生命周期也有一些变化,整体方案不确认的风险较大。最终采用的是 UC 内核的多进程方案,它将整个 H5 页面的解析、排版、js 执行等实现抽离封装到一个独立的进程中,分担了主进程一部分内存压力,从而实现突破单进程内存容量天花板的目标。



UC 多进程示意图



uc 多进程对 crash 率的影响


根据严格 AB 实验的结果评估,手淘开启 UC 多进程之后,Crash 率能有 30-40%的下降收益。


64 位升级


一般说来,现在使用的程序,都是在 32 位的指令集下编译出来的结果,在 32 位子系统下,内存地址的大小只有 4 个字节,理论上的最大寻址空间只有 4G。前面提到,在当前手淘的业务容量下,4G 的内存地址已经不能满足,在今年开始力推手淘 andorid 架构从 32 位升级到 64 位。


说到 64 位,在硬件上,arm v8 及以后的 cpu 都升级到了 64 位的架构,在软件上,android 5.0 以后的系统开始支持了 64 位子系统。我们做过比较准确统计埋点,在市面上的手机,约有 95%是支持 64 位运算的,也就是说 64 位升级带来的收益可以覆盖到绝大多数的用户。另一方面,我们也要看到 64 位升级带来的风险,所有的 C/C++代码都需要重新编译到 64 位指令集,可能的风险点包括:


  • 指针长度是从 32 位升到 64 位,对一些 HardCode 的写法可能计算出错,产生稳定性问题。

  • 自定义 so 的加载逻辑(如服务端远程下载)可能没有考虑多 cpu abi 的情况,加载错误 so,产生稳定性问题。

  • 储存的数据,看看有没有因为 64 位和 32 位不同导致不兼容,特别是一些二进制数据,导致覆盖安装或升级后原数据不可用


为了应对这些风险,自 3 月份起就开始针对手淘中的 120 多个 so 进行回归,包括看 32 位与 64 位相互覆盖的升级场景,另一方面,针对 so 的加载逻辑,进行全手淘代码扫描,分析和查看自定义加载 so 的场景确认是否支持多 cpuabi。经过几个月的灰度和迭代,最终在 618 版本前,完成了 64 位的上线。



在本次的 618 大促中,可以明显看到,以往大促中,OOM 的占比,最高的时候,可以占到近 40%,经过 64 位升级与多进程手段叠加后,可以看到看大促态的 OOM 占比,已经降到了 10%左右。这里面还包括了 5%的 32 位用户,对 OOM 的治理效果非常显著。

展望

  • 新技术形态的挑战

  • 内存问题一直是大促端侧稳定性最大的挑战,在今天已经得到比较好的解决,当然,系统资源终归是有限的,我们仍然需要有效合理的使用系统资源。更重要的是,面向未来,新的技术形态像 flutter 等入淘,多个虚似机的并存,对系统资源仍然会有较大的挑战。

  • 从稳定性到流畅体验

  • 对用户来说,稳定性只是最基础要求,后续我们会在体验上持续优化,带给手淘用户真正的如丝般顺滑的体验。


本文转载自公众号淘系技术(ID:AlibabaMTT)。


原文链接


https://mp.weixin.qq.com/s?__biz=MzAxNDEwNjk5OQ==&mid=2650409401&idx=1&sn=7eaff7213e397c24cea658173c0a45c8&chksm=8396c1a1b4e148b765c1a82503b4c713a58a93fe673371efd8d38f68952c21c154c54c2126d6&scene=27#wechat_redirect


2020-08-10 14:042925

评论 1 条评论

发布
用户头像
谢谢分享场景。
2020-08-11 13:07
回复
没有更多了
发现更多内容

云上如何实现 Autoscaling: AutoMQ 的实战经验与教训

AutoMQ

大数据 kafka 云原生 AutoMQ autoscaling

Sublime下载安装激活教程

大师兄

编辑器 IDEA Sublime sublime text破解版

新资产协议热潮下,普通用户如何有效保障自身加密资产安全?

NFT Research

NFT #Web3

C++多态与虚拟:C++编译器对函数名的改编(Name Mangling)

EquatorCoco

c++ 开发语言

风险防不胜防?看YashanDB如何守护你的数据库安全(下篇)

YashanDB

数据库安全 数据库系统 yashandb 崖山数据库

MES系统功能有什么?对企业有什么价值?

万界星空科技

工业互联网 制造业 生产管理系统 mes 万界星空科技

IPQ9574 router CUP + QCN9274 RF module - ensure the security of Wi-Fi connection

wifi6-yiyi

5G wifi router

1 名工程师轻松管理 20 个工作流,创业企业用 Serverless 让数据处理流程提效

阿里巴巴云原生

阿里云 Serverless 云原生

喜讯!和鲸科技入选“算力中关村”—— 2024 算力技术创新与应用服务案例集

ModelWhale

AI算力

让研发规范管得住 - 我们为什么在流水线之上又做了研发流程?

阿里巴巴云原生

阿里云 云原生 云效

让研发规范管得住 - 我们为什么在流水线之上又做了研发流程?

阿里云云效

阿里云 云原生 云效

云手机对出海企业有什么帮助?

Ogcloud

云手机 海外云手机 云手机海外版 国外云手机 云手机推荐

「布道师系列文章」小红书黄章衡:AutoMQ Serverless 基石-秒级分区迁移

AutoMQ

大数据 kafka 云原生 小红书 AutoMQ

Kafka Exactly Once 语义实现原理:幂等性与事务消息

AutoMQ

大数据 kafka 云原生 幂等性 AutoMQ

如何让权限管理更便利安全?

芯盾时代

网络安全 权限管理 iam 统一身份认证

无需重新学习,使用 Kibana 查询/可视化 SLS 数据

阿里巴巴云原生

阿里云 云原生 sls

如何设计质量规划方案?

老张

技术方案 质量保障 方案设计

MT7915 vs QCN9074:What’s the Performance Differences in WiFi 6 SoCs?

wallyslilly

商品计划在服装品牌供应链管理中的突出地位

第七在线

选择便宜的云主机,让你的网站实现高性价比托管

一只扑棱蛾子

云主机

TikTok引流中海外云手机的实用功能分享

Ogcloud

云手机 海外云手机 云手机海外版 tiktok运营 海外云手机推荐

客户端稳定性优化实战,Crash率最高下降40%_软件工程_邹迪飞(之羲)_InfoQ精选文章