QCon 演讲火热征集中,快来分享技术实践与洞见! 了解详情
写点什么

微信 AI 团队推出最新 NumNet+ 模型,超越谷歌登 DROP 榜首

  • 2019-10-18
  • 本文字数:2532 字

    阅读完需:约 8 分钟

微信AI团队推出最新NumNet+模型,超越谷歌登DROP榜首

近期,微信 AI 团队在 leaderboard 网站上提交的 NumNet+模型,经 DROP 数据集检验,超越 Google Research ,并占据排行榜第一名。微信 AI 团队称,这项技术可以帮助人工智能提升阅读理解能力和逻辑推理能力,并已经向专利局提交专利申请,未来或可能用于完善腾讯小微智能对话助手。为了解 NumNet+模型更多的信息,InfoQ 对微信 AI 团队进行了相关采访。



NLP自然语言处理)以实现人机交流为目的,是连通机器语言和人类语言的桥梁。它主要分为两个部分:NLU(自然语言理解) NLG(自然语言生成)。此次微信 AI 团队所研发的 NumNet+ 模型则主要是应对 NLU 领域中的“数学运算问题”,换句话说就是 NumNet+ 模型能够在一定程度上提高计算机的数学推理能力。


注:NLU 目前应用的领域主要集中在机器翻译、机器客服、智能音箱等领域,但由于需要大量的数据训练和 NLU 本身存在的一些语言语义上的难点,其实机器还不是非常智能。

leaderboard 和 DROP

微信 AI 团队推出的模型被称为“NumNet+”,核心组件是能够进行数字感知的图卷积网络 NumGNN 。目前,NumNet+ 模型经过 leaderboard 网站评测,在 DROP 数据集 榜单上排名第一。


leaderboard 网站是由 AI2(Allen Institute for Artificial Intelligence)实验室开发的在线评测网站。AI2 在 leaderboard 网站上发布了多种数据集,每一个数据集都有相应的排行榜。其中的 DROP 数据集便是专门为考察模型应对数学运算问题的能力而提出的。


举个例子:当你对机器人说拿 10 个蛋挞,它也许会很快拿 10 个蛋挞放在你的面前;但如果你对机器人说,给这里的 5 个人,每人 2 个蛋挞,它就很有可能会出现混乱。微信 AI 团队所提出的 NumNet+模型,就是为了解决这类问题、提高人工智能在数学运算方面理解能力的模型。相对应的,DROP 则是为了检测这种能力强弱而设立的数据集。


微信 AI 团队称,DROP 榜单更强调对数学运算相关推理能力的测评。NumNet+能够获得第一,说明微信 AI 团队提出的基于图卷积网络的方法在数学推理方面具有一定的潜力,为学术界解决此类问题提供了一种候选方向。


涉及到数学运算方面的数据集,可以理解成两类:

1.类似于做数学应用题,这类问题的文本通常来讲是比较简单的,但是涉及到的数学运算比较复杂,数学表达式涉及很多步骤。

2.文本部分更长,对于文本理解要求更高,但是中间涉及到数学运算种类较少,复杂程度也较低。

构建 NumNet+ 模型

NumNet+ 模型基于原有的 NumNet 模型构建,融入 RoBERTa 的能力,以及核心组件 NumGNN 的加成,才得以刷新 DROP 数据集榜单。


微信 AI 团队解释称,在 NumNet+模型中,问题和文本首先需要经过一个 encoder (编码器)编码成向量表示,然后再输入到 NumGNN 中。在 encoder 部分,NumNet+ 用 RoBERTa 替换了 NumNet 模型中未经过预训练的 Transformer encoder,而这一改变也使得实验效果更佳。

NumGNN 的作用

过去大多数机器阅读理解模型往往会将数字与非数字单词同等对待,如此便无法获知数字的大小关系,也不能完成诸如计数、加减法等数学运算。为解决这个问题,微信 AI 团队提出了图卷积网络 NumGNN。


通过 NumGNN,微信 AI 团队利用图的拓扑结构编码数字间的大小关系,将文章和问题中的数字作为图结点,在具有“>”和“<=”关系的数字间建立有向边,从而将数字的大小关系作为先验知识注入模型;另一方面,微信 AI 团队还使用 NumGNN,在前述图结构上执行推理,从而支持更复杂的数学推理功能。


NumNet+ 模型的成功,侧面反映出图卷积网络在处理符号推理类问题中确实能够起到一定的作用,并可以作为解决该类问题的一种候选方法。微信 AI 团队成员表示,近几年,图卷积网络在 NLP 中有很多应用,是一种不错的建模多个对象间关系的工具;但同样它也有自己的局限性,需要根据实际问题的要求来辩证判断。

对比 DeepMind NALU

神经网络本质上是一系列的矩阵乘和非线性变换,信息一旦注入到神经网络之后,就会变得模糊,以至于数学运算在神经网络中并不能得到很好的实验结果。


DeepMind 主要是尝试用神经网络对符号运算进行建模,换句话说就是预先定义好一些数学表达式类型,看看神经网络能不能够把它学出来,所以它的实验部分在测试的问题方面相对简单。


而微信 AI 团队表示,他们更加关注在已有工作基础上用相对简单的方法为模型带来额外的数学推理能力。从新的 NumNet+ 模型来看,通过图卷积神经网络和合适的建图方式,在一定程度上就能达成这种目的。


另外,从学术发展现状来看,现在神经网络模型比较擅长做分类、模式识别等相关工作,一旦涉及到数学运算,就会涉及到具体符号的操作。利用神经网络建模这类问题比较困难,现在也没有特别公认的非常成熟的建模手段,因此这方面现在还处于探索阶段。

研究和落地过程中的挑战

NumNet+ 模型虽然取得了相关领域排行榜第一,但在整个研究过程中,微信 AI 团队遇到了不少的挑战。


微信 AI 团队表示,在 NumNet+ 模型构建过程中,最困难的是对问题的定义和抽象。一方面需要根据数据集所定义的问题提出假设,另一方面需要花费较长时间通过各种推算方式验证这些假设是不是对的。同时,这中间还需要花费大量的精力做数据的预处理和提升,以保证对比的 baseline 足够强、实验结论的可信度足够高。


另外,在数字离散推理方面,微信 AI 团队也表达了自己的想法:


目前,人们应用较多且具有较强文本理解能力的模型,大部分都是基于神经网络的,然而神经网络并不擅长处理离散符号相关的问题。虽然传统的方法相对来讲,处理起来会更容易一些,但对于文本,特别是复杂文本的理解上还是有所欠缺。未来,如何将这两方面能力做更好的结合会是最大的挑战。


此外,技术落地业务也是非常重要的一环, NumNet+ 模型在实际落地过程中同样遇到了不少困难。对此,微信 AI 团队向 InfoQ 记者表示:


现在最主要的落地难点在于当前的模型所能应对的场景具有一定限制,实际落地中需要找好用户需求与技术所能达到上限的平衡点。换句话说,NumNet+ 模型目前尚未达到特别成熟的程度。只有 NumNet+ 模型再进一步之后,才有可能应用于多种场景,比如对话系统、阅读企业年报、比赛结果报道等。

最后

微信 AI 团队关于 NumNet+ 模型的相关论文《NumNet: Machine Reading Comprehension with Numerical Reasoning》,已经被 EMNLP2019 收录。


开源地址点这里


2019-10-18 08:002347
用户头像
张之栋 前InfoQ编辑

发布了 91 篇内容, 共 49.9 次阅读, 收获喜欢 159 次。

关注

评论

发布
暂无评论
发现更多内容

MediaHuman YouTube Downloader for Mac:功能丰富的视频下载利器

iMac小白

这款工具让开发变得没门槛了

Tp_jh

容器 云原生 K8s 多集群管理 云端开发 生成式AI

【TiDB 社区升级互助材料】TiFlash 最佳实践&上线前准备& FAQ

TiDB 社区干货传送门

版本升级

TIDB 新特性解读 (7.0~7.5)

TiDB 社区干货传送门

版本升级 集群管理 版本测评 新版本/特性解读 7.x 实践

TiDB学习的那些事儿

TiDB 社区干货传送门

学习&认证&课程

看了这篇文章,以后就别再拿 TiDB 和 MySQL 做性能对比了

TiDB 社区干货传送门

实践案例 7.x 实践

浅谈云主机在VPC中进行迁移的使用场景和操作方法

天翼云开发者社区

云计算 云主机

TiDB在线DDL操作对业务到底有没有影响

TiDB 社区干货传送门

实践案例 7.x 实践

TiDB 学习/认证奇遇记

TiDB 社区干货传送门

学习&认证&课程

数仓安全:数据脱敏技术深度解析

华为云开发者联盟

数据库 华为云 华为云开发者联盟 华为云GaussDB(DWS) 企业号2024年5月PK榜

喜讯!云起无垠入选国内首个《汽车网络与数据安全行业全景图》

云起无垠

全景图

广哥哥PCTA考试认证之旅

TiDB 社区干货传送门

社区活动 学习&认证&课程

C#中的对象深拷贝和浅拷贝

EquatorCoco

Java C# 开发语言

Unlocking WiFi 7 Speed: Real-World Testing of QCN9274 with IPQ9574

wallyslilly

qcn9274 ipq9574

值得推荐的10+REST API测试工具

幂简集成

API REST API API 测试

微信小程序直接生成鸿蒙App的路径

Onegun

鸿蒙 鸿蒙开发

恢复误删的 TiDB 集群:从 Kubernetes 全毁情况下恢复

TiDB 社区干货传送门

实战:TiDB 从5.0升级到7.5.1 核心集群

TiDB 社区干货传送门

7.x 实践

我的 TiDB PCTP 认证之旅

TiDB 社区干货传送门

社区活动 6.x 实践 学习&认证&课程

MediaHuman YouTube to MP3 Converter mac:音频转换新体验

iMac小白

TiDB 学习/认证的哪些事儿

TiDB 社区干货传送门

学习&认证&课程

5 分钟搭建「项目文档问答机器人」

Jade@pluto-lang

AWS openai #LangChain rag Pluto

利用LangChain构建的智能数据库操作系统

霍格沃兹测试开发学社

TiDB 学习/认证之路

TiDB 社区干货传送门

学习&认证&课程

我的TiDB 学习与PCTA认证小故事

TiDB 社区干货传送门

TiDB 底层架构 学习&认证&课程

京东JD商品详情API返回值解读:数据驱动的商品研究

技术冰糖葫芦

API 编排 API 文档 API 策略 pinduoduo API

星辰考古:TiDB v1.0 再回首

TiDB 社区干货传送门

版本升级 新版本/特性发布

一文介绍某行数据库升级原则

TiDB 社区干货传送门

版本升级 管理与运维

微信AI团队推出最新NumNet+模型,超越谷歌登DROP榜首_语言 & 开发_张之栋_InfoQ精选文章