写点什么

基于 Logistict 回归的评分卡模型

  • 2020-03-22
  • 本文字数:1970 字

    阅读完需:约 6 分钟

基于Logistict回归的评分卡模型

1 评分卡分类


A 卡(Applicationscore card)新客户申请审批


  • 更准确地评估申请人的未来表现(违约率),降低坏帐率;

  • 加快(自动化)审批流程, 降低营运成本;

  • 增加审批决策的客观性和一致性,提高客户满意度;


B 卡(Behaviorscore card)现有客户管理


  • 更好的客户管理策略, 提高赢利;

  • 减少好客户的流失;

  • 对可能拖欠的客户,提早预警;


C 卡(Collectionscore card)早期催收


  • 优化催收策略,提高欠帐的回收率;

  • 减少不必要的催收行为,降低营运成本。

2 模型开发全流程

用一张图为大家展示,量化团队分析师开发评分卡模型的全流程,以及具体实现方式:



Step1:变量初选


通过等频分箱或最优分箱离散原始数据,计算 IV 值,剔除预测能力差的指标。


  • 信息值(information value,简称”IV”)是常用的进行自变量筛选的指标,计算简单,并且有经验的判断法则,IV 值的计算公式为:





Step2:变量剔除


通过变量聚类或者计算相关系数的方法剔除变量,这一步主要目的是解决多重共线性问题。多重共线性(Multicollinearity)是指线性回归模型中的解释变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确。


Step3:数据离散化


数据离散化的目的是降低异常值的影响,同时增加模型的可解释性,通过 BESTKs、卡方合并、决策树等有监督算法将连续变量离散化几个区间,然后进行 WOE 转换。


  • 证据权重(Weight of Evidence,简称“WOE”)



WOE 是对原始自变量的一种编码形式,要对一个变量进行 WOE 编码,需要首先把这个变量进行分组处理(也叫离散化、分箱)。



Step4:初步建模


将原始指标用 WOE 进行替换后,用 logistic 回归估计参数,并剔除参数估计为负的变量。


下面让我们来了解一下信用评分卡模型所依赖的 Logistic 回归算法。何为“回归”呢?当有一些数据点,用一条直线对这些点进行拟合(该直线称为最佳拟合直线),这个拟合过程就叫回归。那么,利用 Logistic 回归进行分类的主要思想就是根据现有数据对分类边界线建立回归公式,以此进行分类。“回归”源于最佳拟合,即使用最优化算法,找到最佳拟合参数集。


  • Logistic 回归的实现:对于输入特征,每个特征乘以一个回归系数,将所有结果值相加带入 Sigmoid 函数中,从而得到一个 0~1 之间的数值,根据实际情况设定相关阈值,从而达到预测的目的。

  • 最优化算法:如何找到最优回归系数,是 Logistic 回归的关键问题。



即:找到上式的w\dot机器学习中常用的最优化算法有:梯度下降法(GradientDescent)、牛顿法和拟牛顿法(Newton’s method & Quasi-NewtonMethods)、共轭梯度法(Conjugate Gradient)等等,接下来简单介绍梯度下降法。


  • 梯度下降法(Gradient Descent):梯度下降即沿着某函数的梯度方向,找到该函数的最小值,如果梯度记为▽,则函数 f(x,y)的梯度为:



则梯度下降算法的迭代公式为:,其中,为步长。


Step5:人工干预


根据指标的业务意义、上下限、人数占比、违约比例调整分箱规则,即业务干预。


Step6:WOE 更新


人工干预后,得到新的分箱,根据新分箱,更新 WOE。


Step7:模型更新


更新完 WOE 之后,利用新的 WOE 值估计回归参数。


Step8:分数转化


根据 Logistic 回归估计的参数、分箱的 WOE 来确定每个区间的得分。


Step9:模型效果评估


我们利用 AUC、KS 等指标评估模型的预测能力。


  • AUC(Area Under Curve)


AUC 实际上就是 ROC 曲线下的面积,ROC 曲线反映了分类器的分类能力,结合考虑了分类器输出概率的准确性,AUC 量化了 ROC 曲线的分类能力,越大分类效果越好,输出概率越合理。


  • KS (Kolmogorov-Smirnov)


K-S 统计量被应用于信用评级模型主要是为了验证模型对违约对象的区分能力,是表现模型区分能力的验证指标;通常,如果模型的 K-S 统计量越大,表明模型区分正常客户和违约客户的能力越强。


Step10:模型监控


  • PSI (population stability index)


系统稳定性指数,主要考察了模型预测结果的稳定性,通过对建模样本和监控样本中客户的评分或评级分布的比较来判断模型预测结果的稳定性。系统稳定性指数越小,越稳定,表明监控样本的分数的分布情况和建模样本中的情况越相似,可以预期模型在监控样本中的性能表现和建模样本中的性能表现会很接近。


Step11:评分


下面的小示例,简单为大家展示评分卡及其计分模式:



如果该模型的基础分是 50 分,比如有个客户,大专毕业,男性,拥有自有住房,工作 10 年以上,那么他的分数就应该是:Score=50+14+9+24+12=109。

3 总结

本文介绍了基于 Logistic 回归的评分卡模型的实现流程,介绍了 Logistic 算法、IV 值和 WOE,以及评价模型的指标 AUC、ks 值、PSI 等。在实际应用中,评分卡模型的作用日渐突出。量化团队根据业务需要开发各种不同评分卡模型,并尝试不同算法建模,试图更加科学、准确地构建模型,降低误判率,增加审批的客观性,提高客户的满意度。


2020-03-22 21:041977

评论

发布
暂无评论
发现更多内容

捷途山海 T2—— 安全堡垒,护航人生

科技热闻

【FAQ】HarmonyOS SDK 闭源开放能力 —Map Kit(3)

HarmonyOS SDK

HarmonyOS

喜报!Bonree ONE荣膺GOITI首个“可观测性领域年度明星产品奖”

博睿数据

“特斯拉式”创新,被这家科技卫浴品牌极致演绎

Alter

VMware Aria Operations 8.18 发布,新增功能概览

sysin

vmware aria Operations

飞码LowCode前端技术(五)

京东科技开发者

开源向量数据库性能对比: Milvus, Chroma, Qdrant

Zilliz

性能测试 Milvus 向量数据库 Chroma qdrant

从微信小程序原理来看app如何搭建专属的App小程序生态

Geek_2305a8

低代码平台助力医疗业实现业务优化与合规管理:全面提升运营效率

天津汇柏科技有限公司

低代码平台

人工智能 | 阿里通义千问大模型

测试人

人工智能 软件测试

数字身份管理建设是传统社会向数字社会演进的核心关键

芯盾时代

数字身份 身份安全

智源发布原生多模态世界模型Emu3 实现图像、文本、视频大一统

智源研究院

Web网页端IM产品RainbowChat-Web的v7.2版已发布

JackJiang

即时通讯;IM;网络编程

2024年游戏买量应该怎么玩?

FinFish

小程序容器 游戏买量 小游戏技术 快平台游戏买量

飞码LowCode前端技术(六)

京东科技开发者

VMware ESXi 8.0U3 macOS Unlocker & OEM BIOS 2.7 Dell HPE 定制版 9 月更新发布

sysin

macos windows esxi OEM 2.7

VMware ESXi 8.0U3 HPE (慧与) 定制版更新 OEM BIOS 2.7 支持 Windows Server 2025

sysin

macos windows esxi OEM 2.7

冲击美团!已成功 OC

王中阳Go

Go 面试 后端

研发数据要不要跟绩效考核挂钩?

思码逸研发效能

DevOps 研发效能 绩效管理 研发效能度量

Swap丨DAPP开发:兑换交易所质押项目LP分红系统

区块链软件开发推广运营

交易所开发 dapp开发 链游开发 NFT开发 代币开发

DApp众筹项目互助模式系统开发详细步骤与功能设计

区块链软件开发推广运营

交易所开发 dapp开发 链游开发 钱包开发 代币开发

【CCE Autopilot专栏】资源成本降低60%,Serverless的省钱秘籍

华为云原生团队

云计算 容器 云原生

按图搜索的智能化:拍立淘API返回值的算法解析

技术冰糖葫芦

API Explorer API 文档 API 测试 API 性能测试

CAE教程:HyperMesh概述与有限元分析简介

智造软件

仿真 hyperworks 有限元

选择让小程序在APP内运行的高性价比方案

Geek_2305a8

Java 如何确保 JS 不被缓存

威哥爱编程

js Java’

5gWiFi IPQ6010 vs. IPQ5010 Battle of the WiFi 6 Titans:  - Which One Should You Choose?

wifi6-yiyi

5G wifi

计算不停歇,百度沧海数据湖存储加速方案 2.0 设计和实践

Baidu AICLOUD

大数据 hdfs 数据湖 对象存储

VMware Cloud Director 10.6 发布,新增功能概览

sysin

vmware Cloud Director

飞码LowCode前端技术(七)

京东科技开发者

比特币矿工该如何选择矿池?请收下这份 2024 年六大比特币矿池指南

TechubNews

基于Logistict回归的评分卡模型_文化 & 方法_京东数字科技产业AI中心_InfoQ精选文章