HarmonyOS开发者限时福利来啦!最高10w+现金激励等你拿~ 了解详情
写点什么

Kylin 在携程的实践(下)

  • 2020-11-27
  • 本文字数:1587 字

    阅读完需:约 5 分钟

Kylin 在携程的实践(下)

案例分享


离线分析案例



携程之前使用的是 OpenTSDB+Hive。采用 Kylin 前,先从 Hive 先生成聚合表,然后导入 HBase,通过 OpenTSDB 去分析,现在积累了接近百亿的数据,随着数据的增长,老的方案已经无法满足业务需求了,而且同步数据成本高,OpenTSDB 没办法支持精准去重响应时间也很差。用了 Kylin 之后,现在的业务规模已经可以支撑上百亿了,目前已经配有 200 个左右的线上活跃的 Cube。


实时分析案例



这个是去年 3、4 月份用户提的新需求。Kylin 现在是上图所示的 Streaming-Cube 的架构,Kylin 接入的是携程的 Hermes,Hermes 是 Kafka 的一个封装。我们现在支持原生 Kafka 接入和 Hermes 接入,底层沿用 MR,因为我们测试过 Spark,其实很多的场景上和 MR 相当,效果不是特别明显。



这部分主要是用于度假预订状态告警,度假团队需要去分析用户预订的情况,准确实时地发送给客服人员任何预订失败等错误状况,所以这块对于数据构建落地的时间敏感度比较高。目前,通过一系列优化,Streaming 的构建基本保持在 5 分钟左右,可以满足一部分业务的需求。但是,更大的挑战是达到一分钟以内,也就是说秒级构建,所以对于我们来说 Streaming-realtime 会是一个值得尝试的方向。


展望


携程针对 Kylin 主要有两方面的展望。


1 支持自动构建 Cube


这块我们目前在调研,通过分析应用采集的元数据、SQL 特征,可以自动地为用户构建 Cube,为用户节约 Kylin 的学习成本,同时减少重复查询对于 MPP 的压力。


2 Real-time Streaming 的调研和落地


为了能够更加丰富 Kylin 的使用场景,我们打算对 eBay 为 Kylin 贡献的实时流处理技术做进一步调研和落地工作。


Q&A


Q:演讲中提到的构建的 Cube 有 20 个指标,这种情况下去重,是精准去重还是近似去重?有多少个指标呢?


A:用户配的是精确。精确去重指标不会太多。


Q:演讲中提到 20 个维度的响应时间是亚秒级,有 20 个维度。请问你们做了哪些优化的工作来达到如此快的响应时间?


A:我们构建的时候,对于这种维度多的情况,建议当用户采取了以下 3 种措施来优化查询:


  • 使用 Mandatory Dimension;

  • 实现分布式缓存;

  • 配置高基维度的时候,会建议他们把高基维度往前移,这样会更高效地命中 Cube,并减小扫描的数据范围)。


Q:配了 20 个维度,最终产生的 Cube 单日有多大?


A:最大的 Cube 日产生 13 T 的数据。


Q:刚刚提到的监控方案是你们自主研发的,还是有开源的方案可以用?


A:监控是我们自主研发的。我们接入了公司已经成熟的监控平台,避免反复造轮子。


Q:分享里提到的实时 5 分钟构建一次,我理解是采用批操作,并不是真正的流,而是把流几分钟拆成一个批次。是吗?


A:对的。


Q:前面讲到底层用的 MR,没用 Spark,因为觉得时间上并没有什么节省。这个是 Spark 本身的原因,还是因为你们的任务还不是很大的量?因为每次 Spark 启任务的时间和 MR 相比有差别?


A:离线这块目前可以达到要求,所以还没有转成 Spark。我们在实时这块用 Spark 的过程中,就是像你说的,每次提交任务就很慢,达不到要求。


Q:是因为频繁提交的问题?不是因为它本身?


A:对,不是因为它本身。我们也在调研如何避免每个构建过程都启动一次 driver。


Q:在我之前的应用场景里,有一个维度特别的高基维,每天增量就很大,我们查询机制里这个维度是必选的。比如说是人的工号,里面放了很多人,然后我们要去预计算,如果说这个维度非常高,数据量会非常大,这种情况下你们会采取什么办法呢?


A:高基字段可以设置下 shard by。


Q:携程每天预计算的集群大概是有多大?


A:离线集群是 2 台物理机,每台 100 多 G 的物理机,查询节点放了 4 台虚机。实时这块,因为用户量目前不多,所以都是建在虚机上,所以内存也不大。


Q:在维度特别大,数据量又很大的情况下,剪枝的话,Cuboid 大概会控制在多少?


A:维度特别大的情况,我们最多是 4096 个 Cuboid。


本文转载自公众号 apachekylin(ID:ApacheKylin)。


原文链接


Kylin 在携程的实践(下)


2020-11-27 10:101261

评论

发布
暂无评论
发现更多内容

智慧派出所管理系统,派出所指挥调度平台搭建

加码技术破圈创新,蚂蚁金融科技助力各行各业转型升级

Lily

浅论指针(三)

Integer

c 指针

理解reflect elem和value的一段测试代码

Geek_7nijc5

Go 语言

C++中结构体的定义

Jack—Li

用 Go + WebSocket 快速实现一个 chat 服务

万俊峰Kevin

websocket go-zero Go 语言

Sentinel的注解支持 - @SentinelResource使用详解

麦洛

sentinel SpringCloud Alibaba

JVM 诊断之 jstat 工具使用

hepingfly

Java JVM jvm调优 jstat

优秀软件设计的特征

这就是编程

腾讯游戏实时计算应用平台建设实践

Apache Flink

flink

[译文] 用故事点数评估开发工作真的好吗?

LigaAI

项目管理 程序人生 敏捷开发

NetCore的缓存使用详例

happlyfox

缓存 学习 netcore 3月日更

随机数环设想

waitmoon

Java

一个数组通过配置随机抽取组成小数组

waitmoon

Java

CountDownLatch:别浪,等人齐再团!

王磊

Java 多线程

产品训练营--第六期作业

曦语

产品训练营

第9周作业

猫。

Tensorflow实现Transformer模型将葡萄牙语翻译成英语

AI_robot

CSP-J/S必备知识——文件输入输出

Jack—Li

源码分析:Redisson分布式锁过程分析

程序员架构进阶

redis 源码分析 分布式锁 28天写作 3月日更

三天研读《中兴电路设计规范》精华总结

不脱发的程序猿

28天写作 电路设计 3月日更 中兴 中兴电路设计规范

【无偿分享】史上最全Python学习大礼包 限24h删

sum56

Python Python基础 python入门 python学习 python资料

BOE(京东方)首度披露“千亿级西南战略” 全面布局物联生态

爱极客侠

已拿到6个Offer!主动分享成功秘籍:阿里巴巴Java面试参考指南(2021最新版)

比伯

Java 架构 面试 程序人生 技术宅

已助我拿到8个Offer!阿里巴巴Java面试参考指南(泰山版)

Java架构追梦

Java 编程 架构 面试 阿里巴巴泰山版

EGG NETWORK阿凡提公链全新一代算法稳定币之王EFTalk

币圈那点事

跟我学丨如何用鲲鹏服务器搭建Hadoop全分布式集群

华为云开发者联盟

hadoop 服务器 集群 鲲鹏 Hadoop全分布式集群

Spring Boot集成 Sentinel 实现接口流量控制

麦洛

微服务 sentinel spring cloud alibaba

有趣!一行代码居然无法获取请求的完整URL

Gopher指北

HTTP Go 语言

从两个模型带你了解DAOS 分布式异步对象存储

华为云开发者联盟

开源 对象存储 存储 分布式异步对象存储 NVM

未来直播 “神器”,像素级视频分割是如何实现的 | CVPR 冠军技术解读

阿里云视频云

阿里云 算法 计算机视觉 音视频

Kylin 在携程的实践(下)_架构_apachekylin_InfoQ精选文章