QCon北京「鸿蒙专场」火热来袭!即刻报名,与创新同行~ 了解详情
写点什么

TensorFlow 模型优化工具包增加新功能,可将深度学习模型缩小一半

  • 2019-08-07
  • 本文字数:1487 字

    阅读完需:约 5 分钟

TensorFlow模型优化工具包增加新功能,可将深度学习模型缩小一半

北京时间 8 月 7 日,TensorFlow 官方在 Medium 博客上更新了一篇文章,宣布为模型优化工具包添加了一项新功能:半精度浮点量化工具,据介绍,该工具能够在几乎不损失精度的情况下,将训练模型缩小一半,还能改善 CPU 和硬件加速器延迟。


TensorFlow 团队将训练后的半精度浮点量化作为模型优化工具包的一部分,这一套工具包括了混合量化,全整数量化和修剪等功能。


通过牺牲极少的精度,训练后的半精度浮点量化成功缩小了 TensorFlow Lite 模型的尺寸(高达 50%),并将模型常数(如权重和偏差值)从全精度浮点(32 位)为精度降低的浮点数据类型(IEEE FP16)。


训练后的半精度浮点是训练 TensorFlow Lite 模型的好工具,因为它对精度的影响极小并且模型尺寸显着减小。


感兴趣的读者可以点击这里查看相关文档,以便解不同的量化选项和方案。


降低精度的好处

降低精度有很多好处,特别是在部署到边缘时:


  • 模型尺寸减少 2 倍。模型中的所有常量值都存储在 16 位浮点数而不是 32 位浮点数中。由于这些常数值通常在整个模型尺寸中占主导地位,因此通常会将模型的尺寸减小约一半。

  • 精确度损失可忽略不计。深度学习模型经常能够在推理上产生良好的结果,同时使用比最初训练时更少的精度。在对几个模型的实验中,研发人员发现推理质量几乎没有损失(见下面的结果)。

尺寸缩小 2 倍,精度折衷可忽略不计

训练后的半精度浮点量化对精度的影响很小,但可以使深度学习模型的大小缩小约 2 倍。例如,以下是 MobileNet V1 和 V2 型号以及 MobileNet SSD 型号的一些结果。MobileNet v1 和 v2 的准确度结果基于ImageNet图像识别任务。在COCO对象识别任务上评估 SSD 模型。


模型准确性

通过将标准 Mobilenet float32 模型和 fp16 变体分别在:ILSVRC 2012 图像分类任务,以及 COCO 对象检测任务上进行了评估,研发人员得到了如下的结果:


如何启用后训练半精度浮点量化

开发者可以在 TensorFlow Lite 转换器上指定训练后的半精度浮点量化,方法是使用训练好的 float32 模型,将优化设置为 DEFAULT,并将目标规范支持的类型设置为半精度浮点常量:


import tensorflow as tf converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir) converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.target_spec.supported_types = [tf.lite.constants.FLOAT16] Tflite_quanit_model = converter.convert()
复制代码


转换模型后即可直接运行,就像任何其他 TensorFlow Lite 模型一样。默认情况下,模型将通过将 16 位参数“上采样”为 32 位,然后在标准 32 位浮点运算中执行操作来在 CPU 上运行。


开发者还可以在 GPU 上运行模型。研发团队已经增强了 TensorFlow Lite GPU 代理,以接收精简参数并直接运行(不需要像在 CPU 上那样转换为 float32)。在应用程序中,开发者可以通过 TfLiteGpuDelegateCreate 功能创建GPU代理。指定代理的选项时,请务必设置 precision_loss_allowed 为 1:


//Prepare GPU delegate.  const TfLiteGpuDelegateOptions options = {    .metadata = NULL,    .compile_options = {      .precision_loss_allowed = 1, // FP16      .preferred_gl_object_type = TFLITE_GL_OBJECT_TYPE_FASTEST,      .dynamic_batch_enabled = 0, // Not fully functional yet    },  }; 
复制代码


有关 GPU 代理的概述,请参阅此链接:


https://medium.com/tensorflow/tensorflow-lite-now-faster-with-mobile-gpus-developer-preview-e15797e6dee7


查看使用半精度浮点量化的工作示例请点这里:


https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/performance/post_training_float16_quant.ipynb


2019-08-07 15:016812
用户头像
陈思 InfoQ编辑

发布了 576 篇内容, 共 286.6 次阅读, 收获喜欢 1303 次。

关注

评论

发布
暂无评论
发现更多内容

英伟达中国特供芯片是缩水版;华为 Mate60 Pro 国产零件价值占比 47%丨 RTE 开发者日报 Vol.84

声网

选购美国云服务器,轻松打造高效网络

一只扑棱蛾子

美国服务器 美国云服务器

Hybrid App开发的流程及业务价值

Onegun

html5 混合开发 Hybrid App

桌面便签软件哪个好?10款全球好评的便签软件助你提升效率!

彭宏豪95

效率 在线白板 备忘录 笔记应用 笔记软件

数字马力面经和答案解析!社招岗

王磊

Java 面试 java面试

华为音乐枫叶音乐会,倾耳聆听心动音乐故事

最新动态

以程序员的身份,教您使用API接口获取虾皮商品详情

Noah

跨境自建站卖家如何提高谷歌广告质量得分?

九凌网络

万字解析XML配置映射为BeanDefinition的源码

华为云开发者联盟

spring 开发 华为云 华为云开发者联盟

新一代信息技术成为数字化转型满意度评价新要素

极客天地

技术贴 | SQL 执行 - 执行器优化

KaiwuDB

从混乱到优雅:基于DDD的六边形架构的代码翻新指南

不在线第一只蜗牛

架构 DDD 框架设计

深入理解Docker:一种革新的容器技术

不在线第一只蜗牛

Docker 容器化 容器化部署

做独立站需要用到的十大软件

九凌网络

如何item_get-获得淘宝商品详情api接口

技术冰糖葫芦

API 接口

JavaScript slice 方法使用指南

Liam

JavaScript 程序员 前端 前端开发 slice

光纤网络排障分析

小魏写代码

能够导出源代码的低代码平台有哪些?

互联网工科生

低代码 源代码

石原子科技亮相2023成都市信息领域新产品发布会

StoneDB

MySQL 数据库 HTAP StoneDB

软件测试/测试开发丨探索Python中的函数定义和调用

测试人

软件测试

龙蜥社区联合浪潮信息发布《eBPF技术实践白皮书》(附下载链接)

OpenAnolis小助手

Linux 白皮书 ebpf 云栖大会 龙蜥社区

轻量级前端架构之:小程序技术

Speedoooo

小程序容器 小程序技术 小程序容器技术 微前端架构 轻量级前端架构

TensorFlow模型优化工具包增加新功能,可将深度学习模型缩小一半_AI&大模型_陈思_InfoQ精选文章