把握行业变革关键节点,12 月 19 日 - 20 日,AICon北京站即将重磅启幕! 了解详情
写点什么

TensorFlow 模型优化工具包增加新功能,可将深度学习模型缩小一半

  • 2019-08-07
  • 本文字数:1487 字

    阅读完需:约 5 分钟

TensorFlow模型优化工具包增加新功能,可将深度学习模型缩小一半

北京时间 8 月 7 日,TensorFlow 官方在 Medium 博客上更新了一篇文章,宣布为模型优化工具包添加了一项新功能:半精度浮点量化工具,据介绍,该工具能够在几乎不损失精度的情况下,将训练模型缩小一半,还能改善 CPU 和硬件加速器延迟。


TensorFlow 团队将训练后的半精度浮点量化作为模型优化工具包的一部分,这一套工具包括了混合量化,全整数量化和修剪等功能。


通过牺牲极少的精度,训练后的半精度浮点量化成功缩小了 TensorFlow Lite 模型的尺寸(高达 50%),并将模型常数(如权重和偏差值)从全精度浮点(32 位)为精度降低的浮点数据类型(IEEE FP16)。


训练后的半精度浮点是训练 TensorFlow Lite 模型的好工具,因为它对精度的影响极小并且模型尺寸显着减小。


感兴趣的读者可以点击这里查看相关文档,以便解不同的量化选项和方案。


降低精度的好处

降低精度有很多好处,特别是在部署到边缘时:


  • 模型尺寸减少 2 倍。模型中的所有常量值都存储在 16 位浮点数而不是 32 位浮点数中。由于这些常数值通常在整个模型尺寸中占主导地位,因此通常会将模型的尺寸减小约一半。

  • 精确度损失可忽略不计。深度学习模型经常能够在推理上产生良好的结果,同时使用比最初训练时更少的精度。在对几个模型的实验中,研发人员发现推理质量几乎没有损失(见下面的结果)。

尺寸缩小 2 倍,精度折衷可忽略不计

训练后的半精度浮点量化对精度的影响很小,但可以使深度学习模型的大小缩小约 2 倍。例如,以下是 MobileNet V1 和 V2 型号以及 MobileNet SSD 型号的一些结果。MobileNet v1 和 v2 的准确度结果基于ImageNet图像识别任务。在COCO对象识别任务上评估 SSD 模型。


模型准确性

通过将标准 Mobilenet float32 模型和 fp16 变体分别在:ILSVRC 2012 图像分类任务,以及 COCO 对象检测任务上进行了评估,研发人员得到了如下的结果:


如何启用后训练半精度浮点量化

开发者可以在 TensorFlow Lite 转换器上指定训练后的半精度浮点量化,方法是使用训练好的 float32 模型,将优化设置为 DEFAULT,并将目标规范支持的类型设置为半精度浮点常量:


import tensorflow as tf converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir) converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.target_spec.supported_types = [tf.lite.constants.FLOAT16] Tflite_quanit_model = converter.convert()
复制代码


转换模型后即可直接运行,就像任何其他 TensorFlow Lite 模型一样。默认情况下,模型将通过将 16 位参数“上采样”为 32 位,然后在标准 32 位浮点运算中执行操作来在 CPU 上运行。


开发者还可以在 GPU 上运行模型。研发团队已经增强了 TensorFlow Lite GPU 代理,以接收精简参数并直接运行(不需要像在 CPU 上那样转换为 float32)。在应用程序中,开发者可以通过 TfLiteGpuDelegateCreate 功能创建GPU代理。指定代理的选项时,请务必设置 precision_loss_allowed 为 1:


//Prepare GPU delegate.  const TfLiteGpuDelegateOptions options = {    .metadata = NULL,    .compile_options = {      .precision_loss_allowed = 1, // FP16      .preferred_gl_object_type = TFLITE_GL_OBJECT_TYPE_FASTEST,      .dynamic_batch_enabled = 0, // Not fully functional yet    },  }; 
复制代码


有关 GPU 代理的概述,请参阅此链接:


https://medium.com/tensorflow/tensorflow-lite-now-faster-with-mobile-gpus-developer-preview-e15797e6dee7


查看使用半精度浮点量化的工作示例请点这里:


https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/performance/post_training_float16_quant.ipynb


2019-08-07 15:017077
用户头像
陈思 InfoQ编辑

发布了 584 篇内容, 共 307.1 次阅读, 收获喜欢 1306 次。

关注

评论

发布
暂无评论
发现更多内容

阿里巴巴瓴羊基于 Flink 实时计算的优化和实践

Apache Flink

大数据 flink 实时计算

TiDB性能优化-操作系统

TiDB 社区干货传送门

性能调优

TiDB 在 CDC 同步下的主备切换

TiDB 社区干货传送门

集群管理 管理与运维 备份 & 恢复 6.x 实践 7.x 实践

AI大模型是如何改变我们的日常生活的?

天津汇柏科技有限公司

AI大模型

短剧系统开发流程步骤/功能设计/方案项目/源码程序

系统开发咨询1357O98O718

dapp链上合约质押挖矿系统开发详细流程/步骤逻辑/案例设计/源码模式

系统开发咨询1357O98O718

Dapp/DeFi算力质押项目挖矿分红系统开发稳定版及详细

系统开发咨询1357O98O718

合约跟单系统开发功能策略/需求设计/源码案例

系统开发咨询1357O98O718

BTC/ETH/IPFS/DAPP云算力质押模式挖矿分红系统开发详情介绍

系统开发咨询1357O98O718

PCSD考试说明及课程汇总

TiDB 社区干货传送门

社区活动 OLTP 场景实践 7.x 实践 学习&认证&课程

一次莽撞的 TiDB 升级故障复盘

TiDB 社区干货传送门

版本升级

论文解读-面向高效生成大语言模型服务:从算法到系统综述

合合技术团队

人工智能 算法 OCR LLM

浅谈Python在人工智能领域的应用

小魏写代码

Copilot的魔法让TiDB离线升级变得轻松愉快

TiDB 社区干货传送门

版本测评 8.x 实践

tidb-operator 安装 TiDB 集群

TiDB 社区干货传送门

集群管理 管理与运维 安装 & 部署 数据库架构设计 7.x 实践

Operator 安装 TiDB 监控告警

TiDB 社区干货传送门

管理与运维 安装 & 部署 数据库架构选型 7.x 实践

测试开发名企定向培训训练营即将开营,限时优惠进行中

测试人

软件测试

TiDB的数据自动均衡到底是怎么实现的?

TiDB 社区干货传送门

数据库架构设计 TiKV 底层架构

TiDB告警推送至企业微信机器人

TiDB 社区干货传送门

监控 集群管理

火山引擎VeDI:如何高效使用A/B实验,优化APP推荐系统

字节跳动数据平台

大数据 大数据 A/B测试

万界星空科技MES系统在食品加工行业的应用

万界星空科技

制造业 mes 万界星空科技 食品行业 食品加工

测试 k8s 安装

TiDB 社区干货传送门

管理与运维 7.x 实践

如何构建更稳定高效的TiDB多租户系统

TiDB 社区干货传送门

新版本/特性解读 数据库架构设计 应用适配 HTAP 场景实践 7.x 实践

突破数据存储瓶颈!转转业财系统亿级数据存储优化实践

TiDB 社区干货传送门

什么是链游?链游dapp游戏系统开发详细案例/步骤方案/规则玩法/源码流程

系统开发咨询1357O98O718

阿里巴巴中国站拍立淘API返回值详解:以图搜商品新体验

技术冰糖葫芦

api 货币化 API 接口 API 文档 API】 pinduoduo API

量化交易搬砖套利对冲系统开发指南详细/源码功能

系统开发咨询1357O98O718

javascript中symbol究竟是什么?

秃头小帅oi

答辩ppt要包含什么内容?分享2个制作答辩ppt的实用技巧!

彭宏豪95

PPT 大学生 在线白板 办公软件 演示文稿制作软件

TensorFlow模型优化工具包增加新功能,可将深度学习模型缩小一半_AI&大模型_陈思_InfoQ精选文章