写点什么

服务平台化,知乎 HBase 实践

  • 2019-03-29
  • 本文字数:10176 字

    阅读完需:约 33 分钟

服务平台化,知乎 HBase 实践

前言

HBase 是一个基于 Hadoop 面向列的非关系型分布式数据库(NoSQL), 设计概念来源于谷歌的 BigTable 模型,面向实时读写、随机访问大规模数据集的场景,是一个高可靠性、高性能、高伸缩的分布式存储系统,在大数据相关领域应用广泛. HBase 系统支持对所存储的数据进行透明切分,从而使得系统的存储以及计算具有良好的水平扩展性.


知乎从 2017 年起开始逐渐采用 HBase 系统存储各类在线业务数据,并在 HBase 服务之上构建各类应用模型以及数据计算任务;伴随着知乎这两年的发展,知乎核心架构团队基于开源容器调度平台 Kubernetes 打造了一整套 HBase 服务平台管理系统,经过近两年的研发迭代,目前已经形成了一套较为完整的 HBase 自动化运维服务体系,能够完成 HBase 集群的快捷部署,平滑扩缩容,HBase 组件细粒度监控,故障跟踪等功能.

背景

知乎对 HBase 的使用经验不算太长,在 2017 年初的时候,HBase 服务主要用于离线算法,推荐,反作弊,还有基础数据仓库数据的存储计算,通过 MapReduce 和 Spark 来进行访问. 而在当时知乎的在线存储主要采用 MySQL 和 Redis 系统,其中:


  • MySQL: 支持大部分的业务数据存储,当数据规模增大后有一些需要进行扩容的表,分表会带来一定的复杂性,有些业务希望能屏蔽这个事情,还有一些是因为历史原因在表设计的时候用 rmsdb 的形式存了一些本该由列存储的数据,希望做一下迁移. 此外 MySQL 基于 SSD,虽然性能很好,花销也比较大;

  • Redis: 可以提供大规模的缓存,也可以提供一定的存储支持. Redis 性能极好,主要的局限是做数据 Resharding 较为繁琐 ,其次是内存成本较高;


针对以上两种在线存储所存在的一些问题,我们希望建立一套在线存储 NoSQL 服务,对以上两种存储作为一个补充;选型期间我们也考虑过 Cassandra, 早期一些业务曾尝试使用 Cassandra 作为存储,隔壁团队在运维了一段时间的 Cassandra 系统之后,遇到不少的问题,Cassandra 系统可操作性没有达到预期,目前除了 Tracing 相关的系统,其他业务已经放弃使用 Cassandra.


我们从已有的离线存储系统出发,在衡量了稳定性,性能,代码成熟度,上下游系统承接,业界使用场景以及社区活跃度等方面之后,选择了 HBase,作为知乎在线存储的支撑组件之一.

HBase On Kubernetes

初期知乎只有一套进行离线计算的集群,所有业务都跑在一个集群上,并且 HBase 集群和其他离线计算 yarn 以及 Impala 混合部署,HBase 的日常离线计算和数据读写都严重受到其他系统影响;并且 HBase 的监控都只停留在主机层面的监控,出现运行问题时,进行排查很困难,系统恢复服务时间较长,这种状态下,我们需要重新构建一套适用于在线服务的系统.


在这样的场景下,我们对在线 HBase 服务的需求是明确的:


  • 隔离性:

  • 从业务方的视角来说,希望相关的服务做到环境隔离,权限收归业务,避免误操作和业务相互影响;

  • 对于响应时间,服务的可用性,都可以根据业务的需要指定 SLA;

  • 对于资源的分配和 blockcache 等参数的配置也能够更加有适应性,提供业务级别的监控和报警,快速定位和响应问题;

  • 资源利用率:从运维的角度,资源的分配要合理,尽可能的提升主机 cpu,内存包括磁盘的有效利用率;

  • 成本控制: 团队用最小的成本去得到最大的运维收益,所以需要提供便捷的调用接口,能够灵活的进行 HBase 集群的申请,扩容,管理,监控. 同时成本包括机器资源,还有工程师. 当时我们线上的这套系统是由一位工程师独立去进行维护.

  • 综合以上需求,参考我们团队之前对基础设施平台化的经验,最终的目标是把 HBase 服务做成基础组件服务平台向提供给上游业务,这个也是知乎技术平台部门工作思路之一,尽可能的把所有的组件对业务都黑盒化,接口化,服务化. 同时在使用和监控的粒度上尽可能的准确,细致,全面. 我们构建在线 HBase 管理运维系统的一个初衷.

Why Kubernetes?

前文说到我们希望将整个 HBase 系统平台服务化,那就涉及到如何管理和运维 HBase 系统,知乎在微服务和容器方面的工作积累和经验是相当丰富的,在当时我们所有的在线业务都已经完成了容器化的迁移工作,超万级别的业务容器平稳运行在基于 mesos 的容器管理平台 Bay 上(参见[1]);与此同时,团队也在积极的做着 Infrastructure 容器化的尝试,已经成功将基础消息队列组件 Kafka 容器化运行于 Kubernetes 系统之上 (参见[2]),因此我们决定也将 HBase 通过 Kubernetes 来进行资源的管理调度.


Kubernetes[3] 是谷歌开源的容器集群管理系统,是 Google 多年大规模容器管理技术 Borg 的开源版本. Kubernetes 提供各种维度组件的资源管理和调度方案,隔离容器的资源使用,各个组件的 HA 工作,同时还有较为完善的网络方案. Kubernetes 被设计作为构建组件和工具的生态系统平台,可以轻松地部署、扩展和管理应用程序. 有着 Kubernetes 大法的加持,我们很快有了最初的落地版本([4]).

初代

最初的落地版本架构见下图,平台在共享的物理集群上通过 Kubernetes(以下简称 K8S) API 建立了多套逻辑上隔离的 HBase 集群,每套集群由一组 Master 和若干个 Regionserver (以下简称 RS) 构成, 集群共享一套 HDFS 存储集群,各自依赖的 Zookeeper 集群独立;集群通过一套管理系统 Kubas 服务来进行管理([4]).



第一代架构

模块定义

在 K8S 中如何去构建 HBase 集群,首先需要用 K8S 本身的基础组件去描述 HBase 的构成;K8S 的资源组件有以下几种:


  • Node: 定义主机节点,可以是物理机,也可以是虚拟机;

  • Pod: 一组紧密关联的容器集合,是 K8S 调度的基本单位;

  • ReplicationController: 一组 pod 的控制器,通过其能够确保 pod 的运行数量和健康,并能够弹性伸缩;


结合之前 Kafka on K8S 的经验,出于高可用和扩展性的考虑,我们没有采用一个 Pod 里带多个容器的部署方式,统一用一个 ReplicationController 定义一类 HBase 组件,就是上图中的 Master,Regionserver 还有按需创建的 Thriftserver;通过以上概念,我们在 K8S 上就可以这样定义一套最小 HBase 集群:


  • 2 * Master ReplicationController;

  • 3 * Regionserver ReplicationController;

  • 2 * Thriftserver ReplicationController (可选);

高可用以及故障恢复

作为面向在线业务服务的系统,高可用和故障转移是必需在设计就要考虑的事情,在整体设计中,我们分别考虑组件级别,集群级别和数据存储级别的可用性和故障恢复问题.

组件级别

HBase 本身已经考虑了很多故障切换和恢复的方案:


  • Zookeeper 集群:自身设计保证了可用性;

  • Master: 通过多个 master 注册在 Zookeeper 集群上来进行主节点的 HA 和更新;

  • RegionServer: 本身就是无状态的,节点失效下线以后会把上面的 region 自动迁走,对服务可用性不会有太大影响;

  • Thriftserver: 当时业务大多数是 Python 和 Golang,通过用 Thrift 对 HBase 的进行,Thriftserver 本身是单点的,这里我们通过 HAProxy 来代理一组 Thriftserver 服务;

  • HDFS:本身又由 Namenode 和 DataNode 节点组成,Namenode 我们开启 HA 功能, 保证了 HDFS 的集群可用性;

集群级别

  • Pod 容器失效: Pod 是通过 ReplicationController 维护的, K8S 的 ControllerManager 会在它 的存储 etcd 去监听组件的失效情况,如果副本少于预设值会自动新的 Pod 容器来进行服务;

  • Kubernetes 集群崩溃: 该场景曾经在生产环境中出现过,针对这种情况,我们对 SLA 要求较高的业务采用了少量物理机搭配容器的方式进行混合部署,极端场景出现时,可以保证重要业务收到的影响可控;

数据级别

  • 所有在 K8S 上构建的 HBase 集群都共享了一套 HDFS 集群,数据的可用性由 HDFS 集群的多副本来提供.

实现细节

资源分配

初期物理节点统一采用 2*12 核心的 cpu,128G 内存和 4T 的磁盘,其中磁盘用于搭建服务的 HDFS,CPU 和内存则在 K8S 环境中用于建立 HBase 相关服务的节点.


Master 组件的功能主要是管理 HBase 集群,Thriftserver 组件主要承担代理的角色,所以这两个组件资源都按照固定额度分配.


在对 Regionserver 组件进行资源分配设计的时候,考虑两种方式去定义资源:



资源分配方式


  • 按照业务需求分配:

  • 根据业务方对自身服务的描述,对相关的 QPS 以及 SLA 进行评估,为业务专门配置参数,包含 blockcache, region 大小以及数量等;

  • 优点是针对业务优化,能够充分的利用资源,降低业务的资源占用成本;

  • 管理成本增加,需要对每一个业务进行评估,对平台维护人员非常不友好,同时需要业务同学本身对 HBase 有理解;

  • 统一规格的资源分配:

  • CPU 以及 MEM 都按照预先设定好的配额来分配, 提供多档的配置,将 CPU 和 MEM 的配置套餐化;

  • 方便之处在于业务扩容时直接增加 Regionserver 的个数,配置稳定,运维成本较低,遇到问题时排障方便;

  • 针对某些有特有访问方式的业务有局限性,如 CPU 计算型,大 KV 存储,或者有 MOB 需求的业务,需要特殊的定制;


介于当时考虑接入的在线业务并不多,所以采用了按业务定制的方式去配置 Regionserver, 正式环境同一业务采用统一配置的一组 Regionserver,不存在混合配置的 Regionserver 组.

参数配置

基础镜像基于 cdh5.5.0-hbase1.0.0 构建


# Example for hbase dockerfile # install cdh5.5.0-hbase1.0.0
ADD hdfs-site.xml /usr/lib/hbase/conf/ADD core-site.xml /usr/lib/hbase/conf/
ADD env-init.py /usr/lib/hbase/bin/
ENV JAVA_HOME /usr/lib/jvm/java-8-oracleENV HBASE_HOME /usr/lib/hbaseENV HADOOP_PREFIX /usr/lib/hadoop
ADD env-init.py /usr/lib/hbase/bin/ADD hadoop_xml_conf.sh /usr/lib/hbase/bin/
复制代码


  • 固定的环境变量,如 JDK_HOME, HBASE_HOME, 都通过 ENV 注入到容器镜像中;

  • 与 HDFS 相关的环境变量,如 hdfs-site.xml 和 core-site.xml 预先加入 Docker 镜像中,构建的过程中就放入了 HBase 的相关目录中,用以确保 HBase 服务能够通过对应配置访问到 HDFS;

  • 与 HBase 相关的配置信息, 如组件启动依赖的 Zookeeper 集群地址,HDFS 数据目录路径, 堆内存以及 GC 参数等,这些配置都需要根据传入 Kubas Service 的信息进行对应变量的修改, 一个典型的传入参数示例:


REQUEST_DATA = {       "name": 'test-cluster',       "rootdir": "hdfs://namenode01:8020/tmp/hbase/test-cluster",       "zkparent": "/test-cluster",       "zkhost": "zookeeper01,zookeeper02,zookeeper03",       "zkport": 2181,       "regionserver_num": '3',       "codecs": "snappy",       "client_type": "java",       "cpu": '1',       "memory": '30',       "status": "running",}
复制代码


通过上面的参数 Kubas Service 启动 Docker 时,在启动命令中利用 hadoop_xml_conf.sh 和 env-init.py 修改 hbase-site.xml 和 hbase-env.sh 文件来完成最后的配置注入,如下所示:


source /usr/lib/hbase/bin/hadoop_xml_conf.sh&& put_config --file /etc/hbase/conf/hbase-site.xml --property hbase.regionserver.codecs --value snappy&& put_config --file /etc/hbase/conf/hbase-site.xml --property zookeeper.znode.parent --value /test-cluster&& put_config --file /etc/hbase/conf/hbase-site.xml --property hbase.rootdir --value hdfs://namenode01:8020/tmp/hbase/test-cluster&& put_config --file /etc/hbase/conf/hbase-site.xml --property hbase.zookeeper.quorum --value zookeeper01,zookeeper02,zookeeper03&& put_config --file /etc/hbase/conf/hbase-site.xml --property hbase.zookeeper.property.clientPort --value 2181&& service hbase-regionserver start && tail -f /var/log/hbase/hbase-hbase-regionserver.log
复制代码

网络通信

网络方面,采用了 Kubernetes 上原生的网络模式,每一个 Pod 都有自己的 IP 地址,容器之间可以直接通信,同时在 Kubernetes 集群中添加了 DNS 自动注册和反注册功能, 以 Pod 的标识名字作为域名,在 Pod 创建和重启和销毁时将相关信息同步全局 DNS.


在这个地方我们遇到过问题,当时我们的 DNS 解析不能在 Docker 网络环境中通过 IP 反解出对应的容器域名,这就使得 Regionserver 在启动之后向 Master 注册和向 Zookeeper 集群注册的服务名字不一致,导致 Master 中对同一个 Regionserver 登记两次,造成 Master 与 Regionserver 无法正常通信,整个集群无法正常提供服务.


经过我们对源码的研究和实验之后,我们在容器启动 Regionserver 服务之前修改 /etc/hosts 文件,将 Kubernetes 对注入的 hostname 信息屏蔽;这样的修改让容器启动的 HBase 集群能够顺利启动并初始化成功,但是也给运维提升了复杂度,因为现在 HBase 提供的 Master 页现在看到的 Regionserver 都是 IP 形式的记录,给监控和故障处理带来了诸多不便.

存在问题

初代架构顺利落地,在成功接入了近十个集群业务之后,这套架构面临了以下几个问题:


  • 管理操作业务 HBase 集群较为繁琐:

  • 需要手动提前确定 HDFS 集群的存储,以及申请独立 Zookeeper 集群,早期为了省事直接多套 HBase 共享了一套 Zookeeper 集群,这和我们设计的初衷不符合;

  • 容器标识符和 HBase Master 里注册的 regionserver 地址不一致,影响故障定位;

  • 单 Regionserver 运行在一个单独的 ReplicationController (以下简称 RC ), 但是扩容缩容为充分利用 RC 的特性,粗暴的采用增加或减少 RC 的方式进行扩容缩容;

  • HBase 配置:

  • 最初的设计缺乏灵活性,与 HBase 服务配置有关的 hbase-site.xml 以及 hbase-env.sh 固化在 Docker Image 里,这种情况下, 如果需要更新大量配置,则需要重新 build 镜像;

  • 由于最初设计是共享一套 HDFS 集群作为多 HBase 集群的存储,所以与 HDFS 有关的 hdfs-site.xml 和 core-site.xml 配置文件也被直接配置进了镜像. 如果需要在 Kubas service 中上线依赖其他 HDFS 集群的 HBase,也需要重新构建镜像;

  • HDFS 隔离:

  • 随着接入 HBase 集群的增多,不同的 HBase 集群业务对 HDFS 的 IO 消耗有不同的要求,因此有了分离 HBase 依赖的 HDFS 集群的需求;

  • 主要问题源自 Docker 镜像对相关配置文件的固化,与 HDFS 有关的 hdfs-site.xml 和 core-site.xml 配置文件与相关 Docker 镜像对应,而不同 Docker 镜像的版本完全由研发人员自己管理,最初版本的实现并未考虑到这些问题;

  • 监控运维:

  • 指标数据不充分,堆内堆外内存变化,region 以及 table 的访问 信息都未有提取或聚合

  • region 热点定位较慢,无法在短时间内定位到热点 region;

  • 新增或者下线组件只能通过扫 kubas service 的数据库来发现相关变更,组件的异常如 regionserver 掉线或重启,master 切换等不能及时反馈;

重构

为了进一步解决初版架构存在的问题,优化 HBase 的管控流程,我们重新审视了已有的架构,并结合 Kubernetes 的新特性,对原有的架构进行升级改造,重新用 Golang 重写了整个 Kubas 管理系统的服务 (初版使用了 Python 进行开发) ,并在 Kubas 管理系统的基础上,开发了多个用于监控和运维的基础微服务,提高了在 Kubernetes 上进行 HBase 集群部署的灵活性,架构如下图所示:



二代架构图

Deployment & Config Map

  • Deployment

  • Deployment (部署) 是 Kubernetes 中的一个概念,是 Pod 或者 ReplicaSet 的一组更新对象描述,用于取代之前的 ReplicationController. Deployment 继承了 ReplicationController 的所有功能,并拥有更多的管理新特性;

  • 在新的 Kubas 管理系统中,新设计用 Deployment 代替 ReplicationController 做 Pod 的管理,使用一个 Deployment 部署一组 Regionservers 的方式来代替单 Regionserver 对应一个 ReplicationController 的设计,提升集群部署扩缩容管理的灵活性;

  • 每一组 Deployment 都会注入各类信息维度的标签,如相关集群的信息就,服务类型,所属应用等;



Deployment 部署


  • ConfigMap

  • ConfigMap 是 Kubernetes 用来存储配置文件的资源对象,通过 ConfigMap 可以将外部配置在启动容器之前挂载到容器中的指定位置,并以此为容器中运行的程序提供配置信息;

  • 重构之后管理系统中,所有 HBase 的组件配置都存放至 ConfigMap 之中,系统管理人员会根据需-要预先生成若干 HBase 的配置模板存放到 K8S 系统的 ConfigMap 中;

  • 在业务方提供出 HBase 服务申请时,管理人员通过业务资源的需求结合配置模板,为申请的 HBase 集群组件渲染具体的 hbase-site.xml 以及 hbase-env.sh 等 HBase 配置相关的文件再存放到 ConfigMap 中;

  • 最后在容器启动时,k8s 会根据 deployment 将 ConfigMap 中的配置文件 Mount 到配置中指定的路径中;

  • 和 Deployment 的操作类似,每一份 ConfigMap 也都会标记上标签,将相关的 ConfigMap 和对应的集群和应用关联上;



ConfigMap 存档

组件参数配置

在引入了 ConfigMap 功能之后,之前创建集群的请求信息也随之改变.


RequestData{  "name": "performance-test-rmwl",  "namespace": "online",  "app": "kubas",  "config_template": "online-example-base.v1",  "status": "Ready",  "properties": {    "hbase.regionserver.codecs": "snappy",    "hbase.rootdir": "hdfs://zhihu-example-online:8020/user/online-tsn/performance-test-rmwl",    "hbase.zookeeper.property.clientPort": "2181",    "hbase.zookeeper.quorum": "zookeeper01,zookeeper02,zookeeper03",    "zookeeper.znode.parent": "/performance-test-rmwl"  },  "client_type": "java",  "cluster_uid": "k8s-example-hbase---performance-test-rmwl---example"}
复制代码


其中 config_template 指定了该集群使用的配置信息模板,之后所有和该 HBase 集群有关的组件配置都由该配置模板渲染出具体配置.


config_template 中还预先约定了 HBase 组件的基础运行配置信息,如组件类型,使用的启动命令,采用的镜像文件,初始的副本数等.


servers:{  "master": {    "servertype": "master",    "command": "service hbase-master start && tail -f /var/log/hbase/hbase-hbase-master.log",    "replicas": 1,    "image": "dockerimage.zhihu.example/apps/example-master:v1.1",    "requests": {      "cpu": "500m",      "memory": "5Gi"    },    "limits": {      "cpu": "4000m"    }  },}
复制代码


Docker 镜像文件配合 ConfigMap 功能,在预先约定的路径方式存放配置文件信息,同时在真正的 HBase 配置路径中加入软链文件.


RUN mkdir -p /data/hbase/hbase-siteRUN mv /etc/hbase/conf/hbase-site.xml /data/hbase/hbase-site/hbase-site.xmlRUN ln -s /data/hbase/hbase-site/hbase-site.xml /etc/hbase/conf/hbase-site.xml
RUN mkdir -p /data/hbase/hbase-envRUN mv /etc/hbase/conf/hbase-env.sh /data/hbase/hbase-env/hbase-env.shRUN ln -s /data/hbase/hbase-env/hbase-env.sh /etc/hbase/conf/hbase-env.sh
复制代码

构建流程

结合之前对 Deployment 以及 ConfigMap 的引入,以及对 Dockerfile 的修改,整个 HBase 构建流程也有了改进:



HBase on Kubernetes 构建流程


  • 编制相关的 Dockerfile 并构建基础的 HBase 组件镜像;

  • 为将要创建的 HBase 构建基础属性配置模板,订制基础资源,这部分可以通过 Kubas API 在 Kubernetes 集群中创建 ConfigMap;

  • 具体创建部署集群时,通过调用 Kubas API, 结合之前构建的 ConfigMap 模板,渲染出 HBase 集群中各类组件的详细 ConfigMap, 然后在 Kubernetes 集群中构建 Deployment;

  • 最终通过之前构建好的镜像加载组件 ConfigMap 中的配置,完成在 Kubernetes Node 中运行的一个 HBase 组件容器;


通过结合 K8S 的 ConfigMap 功能的配置模板,以及 Kubas API 调用,我们就可以在短时间部署出一套可用的 HBase 最小集群 (2Master + 3RegionServer + 2Thriftserver), 在所有宿主机 Host 都已经缓存 Docker 镜像文件的场景下,部署并启动一整套 HBase 集群的时间不超过 15 秒.


同时在缺少专属前端控制台的情况下,可以完全依托 Kubernetes dashboard 完成 HBase 集群组件的扩容缩容,以及组件配置的查询修改更新以及重新部署.

资源控制

在完成重构之后,HBase 服务面向知乎内部业务进行开放,短期内知乎 HBase 集群上升超过 30+ 集群,伴随着 HBase 集群数量的增多,有两个问题逐渐显现:


  1. 运维成本增高: 需要运维的集群逐渐增高;

  2. 资源浪费:这是因为很多业务的业务量并不高,但是为了保证 HBase 的高可用,我们至少需要提供 2 个 Master + 3 个 Region Server,而往往 Master 的负载都非常低,这就造成了资源浪费.


为了解决如上的两个问题,同时又不能打破资源隔离的需求,我们将 HBase RSGroup 功能加入到了 HBase 平台的管理系统中.


优化后的架构如下:



RSGroup 的使用


由于平台方对业务 HBase 集群的管理本身就具有隔离性,所以在进行更进一步资源管理的时候,平台方采用的是降级的方式来管理 HBase 集群,通过监听每个单独集群的指标,如果业务集群的负载在上线一段时间后低于阈值,平台方就会配合业务方,将该 HBase 集群迁移到一套 Mixed HBase 集群上.


同时如果在 Mixed HBase 集群中运行的某个 HBase 业务负载增加,并持续一段时间超过阈值后,平台方就会考虑将相关业务提升至单独的集群.

多 IDC 优化

随着知乎业务的发展和扩大,知乎的基础架构逐渐升级至多机房架构,知乎 HBase 平台管理方式也在这个过程中进行了进一步升级,开始构建多机房管理的管理方式;基本架构如下图所示:



多 IDC 访问方式


  • 业务 HBase 集群分别在多个 IDC 上运行,由业务确定 IDC 机房的主从方式,业务的从 IDC 集群数据通过平台方的数据同步组件进行数据同步;

  • 各 IDC 的 Kubas 服务主要负责对本地 Kubernetes 集群的具体操作,包括 HBase 集群的创建删除管理,regionserver 的扩容等 HBase 组件的管理操作,Kubas 服务部署与机房相关,仅对接部署所在机房的 K8S 集群;

  • 各 IDC 的 Kubas 服务向集群发现服务上报本机房集群信息,同时更新相关集群主从相关信息;

  • 业务方通过平台方封装的 Client SDK 对多机房的 HBase 集群进行访问,客户端通过集群发现服务可以确定 HBase 集群的主从关系,从而将相关的读写操作分离,写入修改访问可以通过客户端指向主 IDC 的集群;

  • 跨机房间的数据同步采用了自研的 HBase Replication WALTransfer 来提供增量数据的同步;

数据同步

在各类业务场景中,都存在跨 HBase 集群的数据同步的需求,比如数据在离线 HBase 集群和在线集群同步,多 IDC 集群数据同步等;对于 HBase 的数据同步来说,分为全量复制和增量复制两种方式;



HBase 数据同步


在知乎 HBase 平台中,我们采用两种方式进行 HBase 集群间的数据同步


  • HBase Snapshot:


全量数据复制我们采用了 HBase Snapshot 的方式进行;主要应用在离线数据同步在线数据的场景;


  • WALTransfer:


主要用于 HBase 集群之间的的增量数据同步;增量复制我们没有采用 HBase Replication,相关同步方式我们通过自研的 WALTransfer 组件来对 HBase 数据进行增量同步;


WALTransfer 通过读取源数据 HBase 集群提供 WAL 文件列表,于 HDFS 集群中定位对应的 WAL 文件,将 HBase 的增量数据按序写入到目的集群,相关的细节我们会在以后的文章中详细解析

监控

从之前重构后的架构图上我们可以看到,在 Kubas 服务中我们添加了很多模块,这些模块基本属于 HBase 平台的监控管理模块.


Kubas-Monitor 组件


基本的监控模块,采用轮询的方式发现新增 HBase 集群,通过订阅 Zookeeper 集群发现 HBase 集群 Master 以及 Regionserver 组.


采集 Regionserver Metric 中的数据,主要采集数据包括:


  • region 的信息,上线 region 数量,store 的数量、storefile 的大小、storefileindex 的大小,读取时 memstore 命中的次数和缺失次数;

  • blockcache 的信息,例如 blockcache 中使用多少、空闲多少、累计的缺失率、命中率等.

  • 读写请求的统计信息,例如最大最小读写响应时间,读写的表分布、读写数据量、读写失败次数等;

  • compact 与 split 的操作信息,例如队列的长度、操作次数和时间等;

  • handler 的信息,例如队列长度、处于活跃 handler 的数量以及活跃的 reader 数量;


其他维度的指标如容器 CPU 以及 Mem 占用来自 Kubernetes 平台监控,磁盘 IO,磁盘占用等来自主机监控



HBase 部分监控


Kubas-Region-Inspector 组件


  • 采集 HBase 表 Region 信息,通过 HBase API 接口,获取每个 HBase Region 的数据统计信息,并将 Region 数据聚合成数据表信息;

  • 通过调用开源组件形成 HBase 集群 Region 分布的图表,对 Region 热点进行定位;



HBase Region 分布监控


通过以上模块采集的监控信息,基本可以描述在 Kubernetes 上运行的 HBase 集群的状态信息,并能够辅助运维管理人员对故障进行定位排除.

Future Work

随着公司业务的快速发展,知乎的 HBase 平台业务同时也在不断的迭代优化,短期内我们会从以下几个方向进一步提升知乎 HBase 平台的管理服务能力:


  • 提升集群安全稳定性. 加入 HBase 权限支持,进一步提升多租户访问下的安全隔离性;

  • 用户集群构建定制化. 通过提供用户数据管理系统,向业务用户开放 HBase 构建接口,这样业务用户可以自行构建 HBase 集群,添加 Phoniex 等插件的支持;

  • 运维检测自动化. 自动对集群扩容,自动热点检测以及转移等;


Reference


[1] 知乎基于 Kubernetes 的 Kafka 平台的设计和实现


[2] 知乎容器平台演进及与大数据融合实践


[3] Kubernetes


[4] Building online hbase cluster of zhihu based on kubernetes


作者简介:张宇,毕业于北京邮电大学,先后在百度、搜狐从事搜索、分布式存储、分布式离线计算等方向的工作。目前在知乎负责 HBase 存储平台服务。


2019-03-29 15:235155

评论 2 条评论

发布
用户头像
为啥都用了CDH的包不直接上CDH呢?因为其他配套组件需求不高吗?
2019-03-29 20:07
回复
用户头像
好好学习下,目前看来容器化是个大趋势
2019-03-29 19:56
回复
没有更多了
发现更多内容

碳课堂|入门必看!碳足迹(CFP)主要国际标准一览

AMT企源

碳管理 碳核算 碳足迹

运营商大模型的进化路线“分野”

脑极体

AI

LLMs 能否胜任「数据标注」?机遇与挑战并存

Baihai IDP

程序员 AI 数据标注 LLM 企业号 5 月 PK 榜

以太坊

dappweb

以太坊

AI日报|GPT-4o向免费用户开放!AI助手“腾讯元宝”上线应用商店

可信AI进展

RUM是什么?它能解决什么问题?

乘云数字DataBuff

前端监控 可观测性 RUM

重磅上线:腾讯云应用性能监控 APM 实现多语言应用秒级接入

腾讯云可观测平台

腾讯云 可观测平台

[ICDE2024]多正常模式感知的频域异常检测算法MACE

阿里云大数据AI技术

人工智能 阿里云 异常检测算法 ICDE2024

带你走进量子云平台(二)

天翼云开发者社区

云计算 量子云 量子云平台

得助ICC智能联络中心助力企业数字化营销服务升级

中关村科金

人工智能 智能客服 大模型 联络中心

儿童节变身小小音乐家,用ModelArts制作一张AIGC音乐专辑

华为云开发者联盟

人工智能 华为云 华为云开发者联盟 企业号2024年5月PK榜 六一儿童节

合合信息启信数据洞察:长三角新能源汽车产业协同,打造“4小时产业圈”

合合技术团队

产业 新能源汽车 长三角

QCN6274 and QCN9074 chip series Comprehensive comparison

wifi6-yiyi

WiFi7 6G

LED显示屏未来的发展值得期待

Dylan

技术 行业 LED LED显示屏 市场

抓包神器Charles:解析网络数据传输的秘密

霍格沃兹测试开发学社

阿里云数据库 SelectDB 版全面商业化!开启现代化实时数据仓库的全新篇章

SelectDB

大数据 阿里云 数据仓库 数据分析 云原生数据库

黑客恢复被遗忘的比特币钱包

区块链开发团队DappNetWork

Linux VXLAN小实验

天翼云开发者社区

云计算 Linux VXLAN

百度网盘推出「漫画头像」AI生成创意功能

科技热闻

万界星空科技低代码平台+商业开源低代码MES

万界星空科技

低代码 低代码平台 mes 万界星空科技 万界星空科技低代码平台

产品负责人和ScrumMaster可以是同一个人吗?

ShineScrum

Charles抓包神器:深度解析网络数据传输的秘密

测试人

软件测试 charles

快速入门:使用 JavaScript 读取文件的最佳实践

Apifox

JavaScript 程序员 前端 Web 读取文件

服务平台化,知乎 HBase 实践_数据库_张宇(知乎)_InfoQ精选文章