本文由 dbaplus 社群授权转载。
本文中的 SQL*Loader 案例源于几年前数据库一体机 PK 测试的场景,场景比较特殊,在疯狂的 PK 中,方案不断迭代升级,使得案例有一定的趣味性。近期又碰到客户在弄 SQL*Loader 的导入,老案例整理下分享一波。
一、大数据量超宽表导入
该 SQL*Loader 测试场景如下:
将一个包含约数亿行数据的 txt 文件(不可切分文件),使用 SQL*Loader 导入到数据库中,表约有 200+列,不能改数据库层面配置,统计上机操作到导入完成的时间计算成绩,数据量不对该场景直接计 0 分。
当时的最新款 exadata x5 测试该场景计时约 40 分钟(直接路径,Parallel,BINDSIZE 等该优化的都优化了),这个场景我测出来约 10min,远超所有竞争对手的成绩,那究竟是什么操作能有如此大性能提升呢?
1、并行误区
当时由于甲方测试方案中限制不能拆分文件,导致大家测试时没有开启并行,那么 SQL*Loader 是否一定要拆分文件后才能进行并行呢?当然不是,这个场景中出了第 1 版本的方案:
wc -l 统计数据行数;
配合 skip + load 生成多条命令逻辑上 进行切分文件;
批量并行执行命令导入数据。
生成 SQL*Loader 的命令可以使用以下脚本,其中 total line number 取 wc -l 的结果,DOP 为自定义并行度:
当时测试 SQL*Loader 场景时,故意最后一个测试,方案报上去,甲方就补充了一条规则,数据量不对该场景直接 0 分。
经历过后面的场景后发现,当时确实是运气还不错,改进版方案应对的坑当时都没踩到。这个场景中,表的列特别多,其实导入过程中瓶颈并不是 IO,而是 CPU,这也才使得逻辑切分的方法非常适合使用。
那么如果是 IO 为瓶颈呢?可能这种方式并不太合适。对于有高性能存储的环境,测试发现单进程压测可以达到峰值 60%的 IOPS,也就是多进程能带来的 IO 上的提升很有限,同时 skip 操作,其实会产生无用的读操作,同时也消耗 IO 资源,综上 IO 为瓶颈的导入采用这种方式可能大打折扣。
二、超大数据量导入
这个场景有趣的地方就在于,如果你没看上面的那波操作,导入会一帆风顺…场景描述起来很简单:SQL*Loader 单表导入 6T 的文本文件,条件也一样不能拆分文件。
只是这次稍微有点不一样的就是,有环境测试,气氛没那么紧张。但按照老的方案上来,第一步就坑了。之前的场景中,wc 统计那步大约 3 分钟就完成了。而这次 wc 搞了两个小时还没弄完,不得不感叹这个厕所上的时间有点长啊。
很想抽根烟,可惜我不会,只能老实的 cancel 掉再来改进方案。很快我发现其实可以这样。
1、改进方案
在 wc 统计总行数的过慢的时候,可采用估值方式。head -n 50000 xxxx.file > 1.txt;
大文件的字节/小文件的字节数 * 采样样数,可以近似估算出一个总数;
最后一个 Job 不用写 load 数,即为全部加载。
看上去这个方案还是不错,执行下来也还 ok。
2、重大 bug
只是跟甲方汇报的时候,发现了一个大问题,数据对不上!我反思了一下方案,没找到逻辑上的毛病,查了日志,也没问题,只能重新再导入一次,还是 4294967295 这个数值,比甲方提供的数据少几个亿。
作为 Oracle 的 DBA,一个常识就是当你遇到不合理,解释不通的问题时候,MOS 上的 bug 列表永远不会让你失望,印象中拿着 4294967295 这个幸运数字马上定位到了文档 id(1161183.1) SQL*Loader Fails To Load More Than 4294967295 (2^32 - 1) rows From An External Data File 参考下图:
简单来说就是:每命令只能 load 约 42 亿数据,加上 skip 约 65 亿。12c 后才修改这个 bug,当时主流版本时 11.2.0.4 所以这个任务不拆分文件 SQL*Loader 应该是搞不定的。
三、总结
对于 SQL*Loader 导入场景中,skip + load 实现并行的导入的方式对于 CPU 消耗大的导入(涉及很多的单行拆分)还是有适用场景的,但有对于 IO 密集型的导入,可能需要测试以及规避 bug。当然如果没硬性限制的话,很多场景可以考虑直接用外部表。
作者介绍:
蒋健,云趣网络科技联合创始人,11g OCM,多年 Oracle 设计、管理及实施经验,精通数据库优化,Oracle CBO 及并行原理。云趣鹰眼监控核心设计和开发者,资深 Python Web 开发者。
原文链接:
评论