写点什么

Python 或 R:哪种编程语言更适合数据科学?

  • 2021-09-14
  • 本文字数:2053 字

    阅读完需:约 7 分钟

Python或R:哪种编程语言更适合数据科学?

大家经常会讨论 Python 或 R 哪种编程语言更适合数据科学,虽然这两门语言都很受欢迎,但实际上每个语言都有自己更适用的场景。本文简单对这两门编程语言进行分析对比,希望对你有所帮助。

关于 R 的一点背景


R 是一种编程语言和分析工具,由Ross IhakaRobert Gentleman 开发,并于 1993 年首次推出。同时,它也是免费的开源软件,拥有丰富的统计和图形化技术库

 

R分析师统计学家研究人员用得最多的工具之一,用于检索清理分析可视化呈现数据,很多行业如 IT、银行、医疗、金融都使用 R。

用途


  • 数据科学家可以使用 R 编程语言来收集数据,进行统计分析,并产生可视化结果。

  • 它可以用于图形化表示。

  • R 既可用于机器学习,也可用于深度学习。

  • 它还可以为金融业务和计算提供一个复杂的统计工具,R 和它的库可以实现移动平均值、股票市场建模和金融 KDD

  • 它还实现了线性和非线性建模等统计方法。


统计计算:在统计学家中,R 是使用最广泛的编程语言。它有助于统计学家进行操作、收集、清理和分析。它还拥有制图功能,并从任何记录中产生有趣的视觉效果。

 

机器学习:它包括了一些基本机器学习任务的库,比如线性和非线性回归、决策树等等。可以用 R 来创建金融、零售、营销和保健领域的机器学习算法。

关于 Python 的一点背景


它是一种著名的计算机语言,同时也是一种广泛使用的、解释性的、面向对象的程序设计语言。由 Guido van Rossum 发明,并于 1991 年 2 月 20 日首次发布。它可以用于除网络开发之外的各种编程和软件开发,并且可用于创建一个完整的端到端流程。

用途


  • 它可以用于 BDA 的管理,也可以进行复杂的数学计算。

  • 它可与数据库系统连接,或对文件进行读取和编辑。

  • 它适用于软件开发、商业应用、音频、视频、后端网络、移动应用开发等。

  • 它使分析人员能够在更短的时间内生成 Excel 报告。

 

分析:Python 在分析方面非常方便。举例来说,如果数据库包含上百万的行和列,那么从这些数据中提取信息就很困难和费时。这就是 PandasNumPySciPy 之类库的用武之地,它们可以快速完成工作。

 

提取:因为数据并非总是可用的,所以我们需要从网络获取。在这种情况下,可以使用库 ScrapyBeautiful Soup 来从互联网上提取信息。

 

图形化表示SeabornMatplotlib 库可以创建图表、饼图以及其他可视化的内容。

 

机器学习:它也有一个机器学习库。Scikit-LearnPyBrain 是这些库的一种,它们通过一个接口提供了分类、回归和聚类等一些快速机器学习和统计建模工具。

Python 的优点


  • 可用性:适用于多种系统(Windows、Mac、Linux、Raspberry Pi 等)。

  • 简单易行:计算机程序工作所需要的语法或单词和符号直观而直接。它们实际上是英语术语,所以它是可读的。相对于 C、Java 和 C# 等其他技术,代码执行时间减少了,所以开发者和软件工程师的工作时间更长。

  • :它们是一组预先组合的代码,可以重复使用,以减少编码时间。这使得你不必从头开始编写代码。

  • 灵活性:与其他语言(如 Java)相比,它提供了灵活性,并能解决那些本来不可能解决的问题。事实证明,它是可扩展的。

 

既然我们已经从各种角度探讨了这两种编程语言,那么“哪种语言更适合数据科学?”这个问题就浮出水面了。

选择 Python 还是 R?


这两门语言最大的不同之处是它们处理情况的方式。这两种开源语言都收到了大量社区的支持,它们在不断地扩展其库和工具。


但是,你应该问自己的一个问题是,“你希望更关注于什么?机器学习还是统计学习?”


机器学习是人工智能的一门学科,而统计学习是统计学的一个分支。R 是一种统计语言,所以在统计学上很合适。任何人只要有正式的统计学背景,都可以使用 R 进行编程,因为它很容易理解。而 Python 则是机器学习的最佳选择。大型应用是机器学习的重点。Python 看起来是理想的选择,因为它的灵活性和可扩展性适合在生产环境中使用,尤其是当分析必须连接到网络应用程序时。

趋势分析与薪酬比较


如下图所示,Python 或 R 是全球最流行的搜索词。从趋势上来看,Python 在过去十年里比 R 更流行。



根据 PayScale.com 的数据,美国 Python 开发的平均年薪为 79395 美元,而 R 程序的平均年薪为 68554 美元(截至本文发表时)。



总结

 

Python 是一种强大且适应性强的编程语言,可用于广泛的计算机科学应用。而 R 则是一种很流行的用于分析构建的语言。事实上,这两种语言在数据科学领域中都具有一定的优势和意义。


不过,你在选择具体用哪门语言之前,应该先问自己以下几个问题:

 

  • 你有没有兴趣学习机器和人工智能或者统计学习和分析?

  • 在你的领域里最流行的工具是什么?

  • 你想成为对数据可视化有更深理解的分析师,还是想利用它来整合网络应用?

  • 你愿意花多长时间来掌握一种编程语言?

 

总而言之,学习这两种语言绝不会是个坏主意,因为“技多不压身”,只会让你作为一名计算机科学工程师受益。

 

作者介绍:

 

AI Chapters,一名自学成才的数据科学家,喜欢写技术博文。博客内容主要是关于技术指南以及最近的学习和经验。

 

原文链接:

 

https://aichapters.com/python-or-r-which-programming-is-better-for-data-science/

2021-09-14 16:232322

评论

发布
暂无评论
发现更多内容

妨碍做出正确决策的5种认知谬误

俞凡

思维模型 认知

区块链背后的秘密:从交易看故事

Footprint Analytics

区块链

平凯数据库亮相 2023 信息技术应用创新论坛

PingCAP

数据库 信息化 TiDB

天猫店铺所有商品数据接口(Tmall.item_search_shop)

tbapi

天猫API接口 天猫商品数据接口 天猫店铺所有商品数据接口 天猫店铺商品接口

AIBP,我的下一个职业规划

法老猫

AIGC LLMs AIBP

什么是意向锁?它和意向书有什么区别?

王磊

Java 面试

荣耀Magic6系列旗舰新品及MagicOS 8.0发布会

荣耀开发者服务平台

安全 UX 交互 人机协作 loT

【直播预告】刘军博士:科学研究中的AI计算:何助力团队协作创新

九章云极DataCanvas

TiDB 入选 2023 年中国云原生数据库十大厂商推荐

PingCAP

数据库 云原生 TiDB 金融业

【论文解读】模型即服务-介绍MaaS中所涉及的关键技术

合合技术团队

人工智能 大数据 合合信息 论文解读

购买体育赛事直播系统源码:如何找到靠谱一手源码,避免二道贩子源码

软件开发-梦幻运营部

怎么在GridView中限制显示字数

GoodTime

C# asp.net GridView

python3中,//、/ 的区别

GoodTime

Python 水仙花数 // /

软件测试/测试开发|IntelliJ IDEA安装与配置教程

霍格沃兹测试开发学社

软件测试/测试开发|edge浏览器首页及新标签页设置

霍格沃兹测试开发学社

妨碍有效沟通的5种认知谬误

俞凡

沟通 思维模型 认知

软件测试/测试开发丨Python面向对象 学习笔记

测试人

Python 软件测试 测试开发

cannot load "mso.dll" vs2008 web开发问题

GoodTime

web开发 VS2008

每日一题:LeetCode-152. 乘积最大子数组

Geek_4z9ami

面试 算法 LeetCode 动态规划 滚动数组

字节跳动 MapReduce - Spark 平滑迁移实践

字节跳动云原生计算

大数据 spark 云原生

外贸网站显示不安全警告怎么办?消除网站不安全警告超全指南

九凌网络

独立站新手教程引流篇:YouTube SEO优化指南!

九凌网络

Eudic欧路词典 for mac(英语学习工具) v4.5.6完美激活版

mac

苹果mac Windows软件 英语学习软件 欧路词典 Eudic

码住!8个小众宝藏的开发者学习类网站

伤感汤姆布利柏

学习 效率 低代码 低代码开发工具

干货满满!学习有限元分析软件Abaqus的几个必备理论

思茂信息

abaqus abaqus软件 abaqus有限元仿真 有限元分析

Python或R:哪种编程语言更适合数据科学?_语言 & 开发_AI Chapters_InfoQ精选文章