免费下载案例集|20+数字化领先企业人才培养实践经验 了解详情
写点什么

小米:基于 K8s 原生扩展的机器学习平台引擎 ML Engine 实践

  • 2019-12-26
  • 本文字数:2852 字

    阅读完需:约 9 分钟

小米:基于K8s原生扩展的机器学习平台引擎 ML Engine实践

相比于传统的调度系统,Kubernetes 在 CSI、CNI、CRI、CRD 等许多可以扩展的接口上有很大提升。从生态系统上来讲,Kubernetes 依托于 CNCF 社区,生态组件日趋丰富。在云原生设计理念方面,Kubernetes 以声明式 API 为根本,向上在微服务、Serverless、CI/CD 等方面可以做更好的集成,因此不少公司开始选择基于 K8s 搭建机器学习平台。在ArchSummit全球架构师峰会(北京站)的现场,InfoQ 采访到了小米人工智能部高级软件工程师褚向阳,听他分享小米机器学习平台以及基于 K8s 原生扩展的机器学习平台引擎 ML Engine。


2015 年,现任小米人工智能部高级软件工程师褚向阳加入了创业公司——数人云,开始进行 PaaS 平台的研发,算是国内比较早的一批投身容器化 PaaS 平台研发的工程师,后来去到京东广告部,这个阶段积累了一些 GPU 的使用经验,为他之后来小米做机器学习平台打下了基础。采访中,褚向阳表示,相较于通用型 PaaS 平台,机器学习平台更加聚焦业务,需要对机器学习相关业务具备清晰认知,并理解困难点。在小米工作的这段时间,褚向阳参与构建和优化了小米 CloudML 机器学习平台以及 ML Engine 架构。本文,褚向阳分享了他的一些实践经验和想法。

小米 CloudML 机器学习平台

对于机器学习平台的定位,褚向阳套用了 ABC 概念图(如下图),并表示机器学习平台应该处于这三者中间的支撑位置,只有机器学习平台可以充分利用云原生的计算能力和特性,不断加速把数据转化为用户价值的循环过程,这也是机器学习平台真正起作用的地方。



在小米,机器学习平台承载了图像、NLP、声学、搜索推荐等应用业务,各应用作为用户接入机器学习平台,然后可以利用平台提供的所有功能,比如训练、Pipeline、模型服务等,机器学习平台团队对用户提供这些能力的定义,帮助用户更好的使用这些服务。



在这个全景图中,核心逻辑也就是平台接入层、模型框架层和资源管理层被抽离出来形成了 ML Engine。

ML Engine 架构设计演进

据介绍,ML Engine 是基于 K8s 原生扩展的新一代机器学习平台引擎 ,在此之前,小米机器学习平台应用了原生 K8s 的所有对象,比如原来的 Job、Deployment、Service 等,初期的 CloudML 架构图如下所示:



如上图,分布式训练任务主要是一组 Job/Pod+SVC,模型服务主要是 Deployment+SVC+Ingress。褚向阳表示,最初的架构在队列、状态同步,生命周期管理和调度策略层面均存在挑战,比如随着业务规模逐渐成熟,大部分业务训练对分布式提出了比较强的需求,当时虽然可以支持,但用户体验上不够友好。最终,出于解决这些问题的想法,团队开始对平台进行改进。


团队对可能的开源方案进行了调研,发现 TF Operator 的设计理念与现有想法比较吻合,但又没有完全解决问题,因为小米需要对多个框架做统一支持,所以团队决定通过自研解决问题。ML  Engine 的主要思路则是充分利用 K8s 原生的扩展机制,包括 CRD / Webhook / Scheduling Framework 等,将机器学习平台相关的业务模型、控制逻辑和调度策略融入到 K8s 集群中,提供更好的生命周期管理,同时满足高可用、稳定性和易维护性的云原生特性。最终,ML  Engine 变成了由 CRD、Webhock、定制调度器组成的状态。



总结来看,ML Engine 新版架构具备如下特点:


  • 机器学习平台业务的合理抽象 CRD

  • 针对机器学习任务特性的定制调度器

  • 公共的 validating/mutating 逻辑

  • 提供统一的对外接口


褚向阳表示,整个引擎可以理解为基于 K8s 原生扩展做的定制和改造,使它更适合于平台直接把它当做机器学习能力的输出口。举例来说,K8s 里面可能只有 Job,没有机器学习训练或者模型推理,但是通过 ML  Engine 将这些能力抽象到了平台里面,用户调用 K8s 的 API 或者 SDK 时,就可以使用定义好的模型推理和训练能力,直接做 API 级别的交互。

为什么不直接放在 K8s 之上?

对 K8s 的改造其实也花费了团队不少精力,但在褚向阳看来,整个社区的发展,包括 Tensorflow,都在对 K8s 进行扩展,以保证真正把 K8s 用的更灵活,或者真正使用好这份扩展性,也就是云原生的特性,可以很好地继承云原生的稳定性、高可用特性等。如果只是底层基于 K8s,而不做任何改造,很难用好。正是基于这样的扩展机制,开发团队才可以更加灵活和可靠的设计业务场景。

为什么不直接用 K8s 生态里面的工具?

如开篇所言,K8s 依托 CNCF 形成了丰富的开源生态,开源社区中也有很多工具可供选择,但褚向阳表示,这些工具不会为了机器学习一个场景调整调度策略,或者资源分配逻辑。举例来说,深度学习和机器学习中占据主导地位的 GPU 资源,在其他场景下并不常见。目前,社区在这方面比较火的项目是 Kubeflow,小米也吸取了很多 Kubeflow 的优势,但是为了能给平台向上提供统一的接口,只能把这些作为引擎里的关键组成部件。

ML Engine 对多框架的分布式训练支持

在小米,ML Engine 训练任务的核心用例有用户给定训练代码及启动命令(可选:定义数据及产出物);支持选择不同的机器学习框架及运行时环境(CPU/GPU);下发集群,需要支持分布式启动训练,且需要遵循一定的调度优化策略等。


褚向阳表示,ML Engine 训练任务的整体流程为:


1、发起训练任务请求;


2、提交 K8s,创建 ML Train;


3、触发 ML Engine Controller;


4、根据 MLTrain Spec,决定创建 TF Job;


5、ML Train Code 相关 Spec,触发 git-sync Mutating 逻辑;


6、Patch Request;


7、Pod 调度;


8、识别分布式任务,触发 framework plugins



在整个过程中,小米机器学习团队逐渐解决了用户接口层统一、框架状态统一等问题。谈到未来的发展方向,褚向阳表示,整体还是以解决内部需求为主,只要内部用户有需求,团队都会满足。功能上,主要考虑将计量、计费也抽象成 CRD,提供更方便的数据管理逻辑和更丰富的模型服务管理能力。 此外,与模型优化相关的项目,或者说所有可以提高效率的做法也会实时关注,并在时机成熟后积极尝试开源。

经验总结

在机器学习平台搭建层面,每家公司由于背景、业务不同,所以会出现不同的做法,在褚向阳的理解中,K8s 原生的扩展性、服务的可用性保证以及服务的易维护性是可取的优点,但使用时需要注意 admission webhook 是把双刃剑,建议设置过滤条件,以及处理好各框架不同版本之间的 golang 依赖等。


最后,容器也有自己的应用场景,K8s 诞生之初就对无状态应用提供了非常好的支持,无论是开发快速试用环境,还是用来跑大规模分布式训练的任务调度,包括云原生的推理服务,都是非常合适的。如果希望充分发挥云原生的特性,不但平台层和应用层要做改造,底层的支撑平台,包括存储等都要为云原生做好准备,否则会遇到各种各样的困难。


采访嘉宾:


褚向阳,小米人工智能部/高级软件工程师。2013 年毕业后加入红帽软件,吸收开源文化,接触 OpenStack 和 IaaS 平台相关技术。2015 年底开始加入容器云创业公司,参与打造容器化的 PaaS 平台,2018 年从京东广告部加入小米人工智能部,负责小米机器学习平台的建设,重点支持各个框架的分布式训练,订制优化 K8s 调度,努力提高平台用户体验的同时保证集群利用率。持续关注 Kubeflow 社区及性能优化相关开源项目发展。


2019-12-26 09:563505
用户头像
赵钰莹 InfoQ 主编

发布了 882 篇内容, 共 638.8 次阅读, 收获喜欢 2679 次。

关注

评论

发布
暂无评论
发现更多内容

代码审查:从 ArrayList 说线程安全

mzlogin

Java 代码审查

浅谈数仓、数仓模型分层

白程序员的自习室

大数据 解决方案 通用设计模型 数仓

谈产品和创业方向

Ryan Zheng

创业 产品

万事开头难——人为推进效应

Justin

心理学 28天写作 游戏设计

太简单了!看完这篇还能不会SpringCloud+Nginx高并发?

Java架构追梦

Java nginx 架构 面试 SpringCloud

Elasticsearch 近实时搜索 Near Real-Time Search

escray

elastic 28天写作 死磕Elasticsearch 60天通过Elastic认证考试 3月日更

Zookeeper.01 - 简介

insight

zookeeper 3月日更

MySQL主从复制机制

luojiahu

MySQL 主从复制

资深大牛带你了解源码!最详细的docker中安装并配置redis,实战解析

欢喜学安卓

android 程序员 面试 移动开发

资深大牛带你了解源码!面试题解析已整理成文档,已拿offer

欢喜学安卓

android 程序员 面试 移动开发

Day01:VBA和Python入门

披头

办公自动化 IT蜗壳教学 数据科学探究

说说RPC架构

Kylin

读书笔记 3月日更 日常积累 RPC架构

css高度坍塌与清除浮动

依旧廖凯

28天写作 3月日更

Python 日期格式和时间以及当前时间和时间戳

HoneyMoose

如何实现可靠UDP传输

赖猫

计算机网络 udp TCP/IP

阿里Java岗个人面经分享(技术三面+技术HR面):Java基础+Spring+JVM+并发编程+算法+缓存

Java架构之路

Java 程序员 架构 面试 编程语言

微服务学习笔记

lenka

3月日更

[转]html5设计原理

小江

【LeetCode】设计哈希集合Java题解

Albert

算法 LeetCode 28天写作 3月日更

对话微众和红枣:预言机是区块链提供可信数据的基础设施

CECBC

区块链

寻找被遗忘的勇气(十三)

Changing Lin

3月日更

种春草肥禾,织数字天下

脑极体

算法攻关 - 重上到下打印二叉树 (O(n))_offer32

小诚信驿站

刘晓成 小诚信驿站 28天写作 算法攻关 从上到下打印二叉树

2021字节面经最新整理: 面试真经/思维导图/学习笔记!火遍全网

比伯

Java 编程 架构 面试 计算机

《经济学人》2021年3月13日刊精彩文章导读及资源免费下载

wbliu85

你最喜欢的奥斯卡电影是哪部?

wbliu85

滚雪球学 Python 之怎么玩转时间和日期库

梦想橡皮擦

28天写作 3月日更

熟练使用SSH客户端常用工具SecureCRT

xiezhr

Linux SSH securecrt SSH工具

进入大厂的简历应该是什么样子

我是程序员小贱

3月日更

美团工作7年,精华全在这份学习笔记里了,已成功帮助多位朋友拿到5个大厂Offer

Java架构之路

Java 程序员 架构 面试 编程语言

net.coobird.thumbnailator.tasks.UnsupportedFormatException: No suitable ImageReader found for source data.

wjchenge

小米:基于K8s原生扩展的机器学习平台引擎 ML Engine实践_服务革新_赵钰莹_InfoQ精选文章