写点什么

知乎 Hive Metastore 实践:从 MySQL 到 TiDB

  • 2020-09-20
  • 本文字数:2682 字

    阅读完需:约 9 分钟

知乎 Hive Metastore 实践:从 MySQL 到 TiDB

Apache Hive 是基于 Apache Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并且提供了 Hive SQL 进行查询和分析,在离线数仓中被广泛使用。


Hive Metastore 是 Hive 的元信息管理工具,它提供了操作元数据的一系列接口,其后端存储一般选用关系型数据库如 Derby、 MySQL 等。现在很多除了 Hive 之外计算框架都支持以 Hive Metastore 为元数据中心来查询底层 Hadoop 生态的数据,比如 Presto、Spark、Flink 等等。


在知乎,我们是将元信息存储在 MySQL 内的,随着业务数据的不断增长,MySQL 内已经出现单表数据量两千多万的情况,当用户的任务出现 Metastore 密集操作的情况时,往往会出现缓慢甚至超时的现象,极大影响了任务的稳定性。长此以往,MySQL 在未来的某一天一定会不堪重负,因此优化 Hive 的元数据库势在必行。


在去年,我们做过数据治理,Hive 表生命周期管理,定期去删除元数据,期望能够减少 MySQL 的数据量,缓解元数据库的压力。但是经过实践,发现该方案有以下缺点:


1、数据的增长远比删除的要快,治标不治本;


2、在删除超大分区表(分区数上百万)的分区时,会对 MySQL 造成一定的压力,只能单线程去做,否则会影响其他正常的 Hive 查询,效率极其低下;


3、在知乎,元信息删除是伴随数据一起删除的(删除 HDFS 过期数据,节约成本),Hive 的用户可能存在建表不规范的情况,将分区路径挂错,导致误删数据。


因此,我们需要寻找新的技术方案来解决这个问题。

技术选型

已有方案

业内目前有两种方案可供借鉴:


  1. 对 MySQL 进行分库分表处理,将一台 MySQL 的压力分摊到 MySQL 集群;

  2. 对 Hive Metastore 进行 Federation,采用多套 Hive Metastore + MySQL 的架构,在 Metastore 前方设置代理,按照一定的规则,对请求进行分发。


但是经过调研,我们发现两种方案都有一定的缺陷:


  1. 对 MySQL 进行分库分表,首先面临的直接问题就是需要修改 Metastore 操作 MySQL 的接口,涉及到大量高风险的改动,后续对 Hive 的升级也会更加复杂;

  2. 对 Hive Metastore 进行 Federation,尽管不需要对 Metastore 进行任何改动,但是需要额外维护一套路由组件,并且对路由规则的设置需要仔细考虑,切分现有的 MySQL 存储到不同的 MySQL 上,并且可能存在切分不均匀,导致各个子集群的负载不均衡的情况;

  3. 我们每天都会同步一份 MySQL 的数据到 Hive,用作数据治理,生命周期管理等,同步是利用内部的数据同步平台,如果采用上面两种方案,数据同步平台也需要对同步逻辑做额外的处理。

最终方案

其实问题主要在于,当数据量增加时,MySQL 受限于单机性能,很难有较好的表现,而将单台 MySQL 扩展为集群,复杂度将会呈几何倍上升。如果能够找到一款兼容 MySQL 协议的分布式数据库,就能完美解决这个问题。因此,我们选择了TiDB


TiDB 是 PingCAP 开源的分布式 NewSQL 数据库,它支持水平弹性扩展、ACID 事务、标准 SQL、MySQL 语法和 MySQL 协议,具有数据强一致的高可用特性,是一个不仅适合 OLTP 场景还适 OLAP 场景的混合数据库。


选用 TiDB 的理由如下:


  1. TiDB 完全兼容 MySQL 的协议,经过测试,TiDB 支持 Hive Metastore 对元数据库的所有增删改查操作, 使用起来不存在兼容性相关的问题。因此,除了将 MySQL 的数据原样 dump 到 TiDB,几乎没有其他工作需要做;

  2. TiDB 由于其分布式的架构,在大数据集的表现远远优于 MySQL;

  3. TiDB 的可扩展性十分优秀,支持水平弹性扩展,不管是选用分库分表还是 Federation,都可能会再次遇到瓶颈,届时需要二次切分和扩容,TiDB 从根本上解决了这个问题;

  4. TiDB 在知乎已经得到了十分广泛的应用,相关技术相对来说比较成熟,因此迁移风险可控。

Hive 架构

迁移前


其中 Zue 是知乎内部使用的可视化查询界面。

迁移后


在 Hive 的元数据库迁移到 TiDB 了以后,架构几乎没有任何变化,只不过查询的压力由单台 MySQL 节点分摊到了整个 TiDB 集群,集群越大,查询效率越高,性能提升越明显。

迁移流程

  1. 将 TiDB 作为 MySQL 的从库,实时同步数据;

  2. Metastore 缩容至 1 个,防止多个 Metastore 分别向 MySQL 及 TiDB 写入,导致元数据不一致;

  3. 选取业务低峰期,主从切换,将主切为 TiDB,重启 Metastore ;

  4. Metastore 扩容。

  5. 此迁移过程对业务几乎无感,成功上线。

运行概况

  1. 我们从 Hive 层面对数据库进行了测试,模拟业务高峰期,多并发对百万分区级别的表增删分区,所执行的 Hive SQL 如下:


   ALTER TABLE '${table_name}' DROP IF EXISTS PARTITION(...);   ALTER TABLE '${table_name}' ADD IF NOT EXISTS PARTITION(...);
复制代码


花费时间从 45s-75s 降低到了 10s 以下。


  1. 我们从元数据库层面测试了一些 Metastore 提交的 SQL,尤其是那些会造成元数据库压力巨大的 SQL,例如:


SELECT `A0`.`PART_NAME`,`A0`.`PART_NAME` AS `NUCORDER0` FROM `PARTITIONS` `A0` LEFT OUTER JOIN `TBLS` `B0` ON `A0`.`TBL_ID` = `B0`.`TBL_ID` LEFT OUTER JOIN `DBS` `C0` ON `B0`.`DB_ID` = `C0`.`DB_ID` WHERE `C0`.`NAME` = '${database_name}' AND `B0`.`TBL_NAME` = '${table_name}' ORDER BY `NUCORDER0`
复制代码


当某个 Hive 表的分区数量十分巨大时,这条 SQL 会给元数据库造成相当大的负担。迁移前,此类 SQL 在 MySQL 运行时间约为 30s - 40s,迁移后,在 TiDB 运行仅需 6s - 7s,提升相当明显。


  1. 数据同步平台上的 Hive 元数据库内的 SDS 表的同步任务时间从 90s 降低到 15s。

展望

在 Hive Metastore 的场景下,我们已经感受到了 TiDB 在大数据应用场景下的魅力。后续我们希望 TiDB 能够成为跨数据中心的服务,通过数据副本的跨机房部署,打通离线与在线,让离线场景能够在对在线服务无压力的情况下为数据提供实时的 ETL 能力,解决离线 ETL 任务实时性差的问题。为此,我们正在开发 TiBigData (https://github.com/pingcap-incubator/TiBigData)。


目前其作为 PingCAP Incubator 的孵化项目。由来自知乎的 TiKV Maintainer 孙晓光发起。PingCAP Incubator 旨在梳理一套相对完整的 TiDB 生态开源项目孵化体系,将关于 TiDB 开源生态的想法与实际生产环境中的需求相关联,通过开源项目协作方式,共同将想法落地。力求想法项目化。从「我有一个想法」到「项目顺利毕业」,PingCAP 提供一系列的资源支持,确保所有项目孵化的流程都有章可循,同时结合项目不同特征及孵化目的,将项目划分为 Feature 类和 Project 类,针对性地给出孵化流程建议。PingCAP Incubator 中的项目有:TiDB Dashboard、TiUP、TinyKV,TiDB Wasm 等。


完整项目请查看:


https://github.com/pingcap-incubator


PingCAP Incubator 完整文档参考:


https://github.com/pingcap/community/tree/master/incubator


2020-09-20 16:004350

评论

发布
暂无评论
发现更多内容

python提取特定格式的数据

快乐非自愿限量之名

Python

克服指标管理痛点,实现数据价值最大化

袋鼠云数栈

指标体系 指标监控 指标 指标平台 指标建设

Xcode 15 for Mac(开发工具)

Mac相关知识分享

xcode

低代码开发平台推动生产性服务业与制造业融合

EquatorCoco

低代码 生产 制造业

Word文档内容自动生成PPT!这5款堪称办公神器的AI工具不要错过!

彭宏豪95

markdown PPT 在线白板 办公软件 AI生成PPT

浅谈Java Profiling

乘云数字DataBuff

Java Profiling 实时监控

深度解析观测云智能监控的核心设计原理

观测云

智能监控

公平发售平台开发:重塑代币发行的未来

开发丨飞机丨 @aivenli

【HDC.2024】“零代码”智能组装,华为云新一代iPaaS超联接能力让集成更智能

华为云PaaS服务小智

云计算 软件开发 零代码 华为云 大模型

科改考核最高评级,拿下!

天翼云开发者社区

云计算 云服务 云平台

低代码开发平台助力企业数据分析走向高阶段

不在线第一只蜗牛

数据挖掘 数据分析 低代码

怎样解决TikTok直播网络问题、顺利直播带货?

Ogcloud

TikTok tiktok运营 tiktok直播 tiktok直播网络 tiktok直播带货

KubeCon 香港:移动云与云猿生联合议题《在没有专用 Operator 的情况下管理数据库集群》

小猿姐

数据库 Kubernetes operator

TikTok直播专线实现流畅海外直播体验

Ogcloud

TikTok Tik Tok tiktok直播 tiktok直播带货

Navicat Data Modeler Ess for Mac(数据库建模与设计工具)

Mac相关知识分享

数据库建模

Moment of Inspiration for Mac(MoI 3D建模工具)

Mac相关知识分享

3d建模

大数据平台也“云化”?这份改造指南收藏了!

天翼云开发者社区

云计算 大数据 云平台

国科云浅谈IPv6改造的技术挑战与解决方案

国科云

京东商品详情数据接口(JD.item_get)丨京东API接口指南

tbapi

京东 京东商品详情数据接口 京东API接口

华为的成功,你也可以复制

IPD产品研发管理

华为 产品 产品设计 项目 项目经理

SourceTree for Mac(Git客户端工具)

Mac相关知识分享

Git管理神器

首次引入GPT-4o!图像自动评估新基准来啦

Openlab_cosmoplat

图像 #人工智能 ChatGPT

云行| 天翼云中国行走进甘肃,智绘数字陇原新图景!

天翼云开发者社区

人工智能 云计算

2024年,C++正在失去人气吗?

伤感汤姆布利柏

知乎 Hive Metastore 实践:从 MySQL 到 TiDB_数据库_胡梦宇_InfoQ精选文章