HarmonyOS开发者限时福利来啦!最高10w+现金激励等你拿~ 了解详情
写点什么

深度学习的数学(二):神经元工作的数学表示

  • 2020-04-02
  • 本文字数:2525 字

    阅读完需:约 8 分钟

深度学习的数学(二):神经元工作的数学表示

编者按:本文节选自图灵程序设计丛书 《深度学习的数学》一书中的部分章节。


前文所述,神经网络是以从神经元抽象出来的数学模型为出发点的。下面,我们将更详细地考察神经元的工作,并将其在数学上抽象化。

整理神经元的工作

人的大脑是由多个神经元互相连接形成网络而构成的。也就是说,一个神经元从其他神经元接收信号,也向其他神经元发出信号。大脑就是根据这个网络上的信号的流动来处理各种各样的信息的。



让我们来更详细地看一下神经元传递信息的结构。如上图所示,神经元是由细胞体、树突、轴突三个主要部分构成的。其他神经元的信号(输入信号)通过树突传递到细胞体(也就是神经元本体)中,细胞体把从其他多个神经元传递进来的输入信号进行合并加工,然后再通过轴突前端的突触传递给别的神经元。


那么,神经元究竟是怎样对输入信号进行合并加工的呢?让我们来看看它的构造。


假设一个神经元从其他多个神经元接收了输入信号,这时如果所接收的信号之和比较小,没有超过这个神经元固有的边界值(称为 阈值),这个神经元的细胞体就会忽略接收到的信号,不做任何反应。



注:对于生命来说,神经元忽略微小的输入信号,这是十分重要的。反之,如果神经元对于任何微小的信号都变得兴奋,神经系统就将“情绪不稳定”。


不过,如果输入信号之和超过神经元固有的边界值(也就是阈值),细胞体就会做出反应,向与轴突连接的其他神经元传递信号,这称为点火。



那么,点火时神经元的输出信号是什么样的呢?有趣的是,信号的大小是固定的。即便从邻近的神经元接收到很大的刺激,或者轴突连接着其他多个神经元,这个神经元也只输出固定大小的信号。点火的输出信号是由 0 或 1 表示的数字信息。

神经元工作的数学表示

让我们整理一下已经考察过的神经元点火的结构。


(i) 来自其他多个神经元的信号之和成为神经元的输入。


(ii) 如果这个信号之和超过神经元固有的阈值,则点火。


(iii) 神经元的输出信号可以用数字信号 0 和 1 来表示。即使有多个输出端,其值也是同一个。


下面让我们用数学方式表示神经元点火的结构。


首先,我们用数学式表示输入信号。由于输入信号是来自相邻神经元的输出信号,所以根据 (iii),输入信号也可以用“有”“无”两种信息表示。因此,用变量 表示输入信号时,如下所示。



注:与视细胞直接连接的神经元等个别神经元并不一定如此,因为视细胞的输入是模拟信号。


接下来,我们用数学式表示输出信号。根据 (iii),输出信号可以用表示点火与否的“有”“无”两种信息来表示。因此,用变量 表示输出信号时,如下所示。




最后,我们用数学方式来表示点火的判定条件。


从 (i) 和 (ii) 可知,神经元点火与否是根据来自其他神经元的输入信号的和来判定的,但这个求和的方式应该不是简单的求和。例如在网球比赛中,对于来自视觉神经的信号和来自听觉神经的信号,大脑是通过改变权重来处理的。因此,神经元的输入信号应该是考虑了权重的信号之和。用数学语言来表示的话,例如,来自相邻神经元 1、2、3 的输入信号分别为 ,则神经元的输入信号之和可以如下表示。


式中的 是输入信号 对应的 权重(weight)。



根据 (ii),神经元在信号之和超过阈值时点火,不超过阈值时不点火。于是,利用式 (1),点火条件可以如下表示。



这里, 是该神经元固有的阈值。


例 1 来自两个神经元 1、2 的输入信号分别为变量 ,权重为 ,神经元的阈值为 。当 时,考察信号之和 的值与表示点火与否的输出信号 的值。


输入 $\boldsymbol{x_1} $输入 $\boldsymbol{x_2} $和 $\boldsymbol{w_1x_1+w_2x_2} $点火输出信号 $\boldsymbol{y}$
00$5\times0+3\times0=0<4$0
01$5\times0+3\times1=3<4$0
10$5\times1+3\times0=5\geqslant4$1
11$5\times1+3\times1=8\geqslant4$1

点火条件的图形表示

下面我们将表示点火条件的式 (2) 图形化。以神经元的输入信号之和为横轴,神经元的输出信号 为纵轴,将式 (2) 用图形表示出来。如下图所示,当信号之和小于 时, 取值 0,反之 取值 1。



如果用函数式来表示这个图形,就需要用到下面的 单位阶跃函数


单位阶跃函数的图形如下所示。



利用单位阶跃函数 ,式 (2) 可以用一个式子表示如下。


点火的式子:


通过下表可以确认式 (3) 和式 (2) 是一样的。


|||||


|-|-|


|0(无点火)|小于 ||0|


|1(点火)|大于等于 ||1|


此外,该表中的 (式 (3) 的阶跃函数的参数)的表达式


称为该神经元的 加权输入


备注 的处理

有的文献会像下面这样处理式 (2) 的不等号。

在生物上这也许是很大的差异,不过对于接下来的讨论而言是没有问题的。因为我们的主角是 Sigmoid 函数,所以不会发生这样的问题。


图书简介http://www.ituring.com.cn/book/2593



相关阅读


深度学习的数学(一):神经网络和深度学习


2020-04-02 10:002054

评论

发布
暂无评论
发现更多内容

【LeetCode】整数转罗马数字Java题解

Albert

算法 LeetCode 5月日更

Kubernetes入门——Kubernetes日志采集与监控告警

百度开发者中心

百度 Kubernetes 云原生 kubernetes入门 技术课程

Flutter

Geek_7e907c

这份Github下载量高达76.9W次的《Java系列面试宝典》,足以吊打各个大厂面试官!

Java架构之路

Java 程序员 架构 面试 编程语言

据说学会这款数据分析工具,会被各大名企高薪哄抢!

博文视点Broadview

如何从Docker镜像提取Dockerfile?

运维研习社

Docker Dockerfile 5月日更

Docker网络学习第五篇-基础网络模式

Lazy

Docker

阿里技术官最新总结12W字JAVA面试宝典,吊打面试官的硬核法宝!

Java架构之路

Java 程序员 架构 面试 编程语言

ELK协议栈基本介绍

五分钟学大数据

大数据 5月日更

canvas从零到一,实际案例

Vue 海报 js ts canvas

Windows后渗透之权限维持

Thrash

DICOM图像中灰度理解

Lazy

脑科学 脑科学软件工程 脑影像

如何设计高效的HBase数据模型

Jowin

HBase

Spark RDD详解

大数据技术指南

大数据 spark 5月日更

CRUD程序员勿进!全身心投入才能读懂腾讯大佬亲码的“Java微服务”学习笔记

Java架构师迁哥

Flutter Tab

Geek_7e907c

中国信创生态系列报道|融云CEO韩迎:坚持双轮驱动,信创未来大有可为

融云 RongCloud

记一次java读取matlab数据方式

Lazy

Java 后端 matlab 脑科学软件工程

在FL Studio中如何混音你的鼓组采样与旋律采样

奈奈的杂社

经验分享 知识分享

情场失意的我,幸获师兄捞了一把,助我拿到6个大厂offer,Java岗

Java架构师迁哥

阿里内网流传的9w字图解网络(全彩版)GitHub现已下载量过百万

Java架构之路

Java 程序员 架构 面试 编程语言

最强阿里巴巴历年经典面试题汇总:C++研发岗

linux大本营

c++ Linux epoll 服务器开发

iOS 面试策略之系统框架-UIKit

iOSer

ios 面试 语言 & 开发 系统框架

cornerstone 基础概念篇(二)

Lazy

大前端 脑科学 脑科学软件工程 脑影像

Java岗面试攻略分享,阿里的offer真的不难拿

Java架构师迁哥

开源十问, 社区新人快速上手指南

DT极客

cornerstone 基础概念篇(一)

Lazy

cornerstone 脑科学 脑科学软件工程 脑影像

Webrtc 屏幕共享

融云 RongCloud

容器Pod语系修改

ilinux

Serverless:这真的是未来吗?(一)

Serverless Devs

运维 云原生 服务器 #Serverless

css与less,sass的奇妙之旅

less SASS

深度学习的数学(二):神经元工作的数学表示_AI&大模型_涌井良幸,涌井贞美_InfoQ精选文章