写点什么

在 FIFA 20 将技能相似球员进行分组(2):层次聚类

  • 2020-09-22
  • 本文字数:2195 字

    阅读完需:约 7 分钟

在 FIFA 20 将技能相似球员进行分组(2):层次聚类

理解层次聚类

  • 与 K-均值聚类算法(K-means)不同,不需要指定聚类的数量。

  • 结果汇总在树状图,树状图可以方便地解释数据和选择任何数量的聚类。

基本思路

  • 专注 :自下而上(又称凝聚聚类(Agglomerative clustering))

  • 从单个观察开始(又称 叶子 )开始,作为聚类。

  • 通过将叶子合并成 树枝 向上移动。

  • 将树枝与其他叶子或树枝合并。

  • 最终,当所有的东西都合并到一个聚类时,到达顶端。



树状图示例。

解释树状图

  • 在适当的高度上进行切割,以获得所需聚类的 #。

  • 垂直轴:相异度度量(或距离)——两个聚类合并的高度。

  • 高度表示聚类的相似性。

  • 较低的高度更相似

  • 水平轴并不表示相似性。

  • 交换左右分支并不影响树状图的意义。

它如何衡量聚类之间的差异?

  1. 基于度量(最常见的是曼哈顿距离(Manhattan distance)或欧几里得距离(Euclidean distance,亦称欧氏距离))。

  2. 最长距离法(Complete linkage)(即最远邻法(furthest-neighbor))

  3. 最短距离法(Single linkage)(即最近邻法(nearest-neighbor))

  4. 平均距离法(Average linkage)

  5. 质心距离法(Centroid linkage)

  6. 2, 基于相关性的距离

  7. 查找观测值之间的相关性。

层次聚类的缺点

  1. 计算成本高——不适用于大数据集。

  2. ,而表示 K-均值。

  3. 对噪声和离群值敏感。

使用层次聚类对 FIFA20 的球员进行分组

数据清理/预处理(第一部分中的代码)

import pandas as pdimport numpy as npdf = pd.read_csv("/content/players_20.csv")df = df[['short_name','age', 'height_cm', 'weight_kg', 'overall', 'potential','value_eur', 'wage_eur', 'international_reputation', 'weak_foot','skill_moves', 'release_clause_eur', 'team_jersey_number','contract_valid_until', 'nation_jersey_number', 'pace', 'shooting','passing', 'dribbling', 'defending', 'physic', 'gk_diving','gk_handling', 'gk_kicking', 'gk_reflexes', 'gk_speed','gk_positioning', 'attacking_crossing', 'attacking_finishing','attacking_heading_accuracy', 'attacking_short_passing','attacking_volleys', 'skill_dribbling', 'skill_curve','skill_fk_accuracy', 'skill_long_passing', 'skill_ball_control','movement_acceleration', 'movement_sprint_speed', 'movement_agility','movement_reactions', 'movement_balance', 'power_shot_power','power_jumping', 'power_stamina', 'power_strength', 'power_long_shots','mentality_aggression', 'mentality_interceptions','mentality_positioning', 'mentality_vision', 'mentality_penalties','mentality_composure', 'defending_marking', 'defending_standing_tackle','defending_sliding_tackle','goalkeeping_diving','goalkeeping_handling', 'goalkeeping_kicking','goalkeeping_positioning', 'goalkeeping_reflexes']]df = df[df.overall > 86] # extracting players with overall above 86df = df.fillna(df.mean())names = df.short_name.tolist() # saving names for laterdf = df.drop(['short_name'], axis = 1) # drop the short_name columndf.head()
复制代码

标准化数据

from sklearn import preprocessingx = df.values # numpy arrayscaler = preprocessing.MinMaxScaler()x_scaled = scaler.fit_transform(x)X_norm = pd.DataFrame(x_scaled)
复制代码

基于平均距离法的层次聚类

import matplotlib.pyplot as pltimport scipy.cluster.hierarchy as sch# plot dendrogram using average linkageplt.figure(figsize=(10,14))plt.title('Hierarchical Clustering Dendrogram with Average Linkage')dendrogram = sch.dendrogram(sch.linkage(X_norm, method="average"), labels= names, leaf_font_size = 13, orientation='right')
复制代码



  • 分成两组:守门员和其他人

最短距离法

# plot dendrogram using single linkageplt.figure(figsize=(10,14))plt.title('Hierarchical Clustering Dendrogram with Single Linkage')dendrogram = sch.dendrogram(sch.linkage(X_norm, method="single"), labels= names, leaf_font_size = 13, orientation='right')
复制代码



分为守门员和其他人

质心距离法

# plot dendrogram using centroid linkageplt.figure(figsize=(10,14))plt.title('Hierarchical Clustering Dendrogram with Centroid Linkage')dendrogram = sch.dendrogram(sch.linkage(X_norm, method="centroid"), labels= names, leaf_font_size = 13, orientation='right')
复制代码



  • 再次分成守门员和其他人。

最长距离法

# plot dendrogram using complete linkageplt.figure(figsize=(10,14))plt.title('Hierarchical Clustering Dendrogram with Complete Linkage')dendrogram = sch.dendrogram(sch.linkage(X_norm, method="complete"), labels= names, leaf_font_size = 13, orientation='right')
复制代码


结论

最长距离法似乎是将球员进行最准确地分组的方法!


感谢阅读本文,希望对你有所启迪。


本文的 GitHub 仓库:https://github.com/importdata/Clustering-FIFA-20-Players


作者介绍


Jaemin Lee,Jaemin Lee,专攻数据分析与数据科学,数据科学应届毕业生。


原文链接


https://towardsdatascience.com/grouping-soccer-players-with-similar-skillsets-in-fifa-20-part-2-hierarchical-clustering-839705f6d37d?source=---------0-----------------------


2020-09-22 10:031322

评论

发布
暂无评论
发现更多内容

在线crontab表达式执行时间计算工具

入门小站

工具分享

架构实战营 模块六作业

Dylan

架构实战营

密码学系列之:blowfish对称密钥分组算法

程序那些事

加密解密 密码学 程序那些事 密码学和算法

推荐 3 款超好用的 Docker 图形化管理工具

学神来啦

Docker Linux 程序员 分布式 运维

架构实战营模块 6

阿体

浪潮云说 | 开源新势力—云溪数据库ZNBase

云计算

34岁Android开发大叔感慨,已拿offer附真题解析

欢喜学安卓

android 程序员 面试 移动开发

鸿蒙究竟是什么?

Nydia

电商系统微服务

贯通

架构实战营

云图说|初识云数据库GaussDB(for Cassandra)

华为云开发者联盟

开源 Cassandra 云数据库 GaussDB(for Cassandra) 宽列数据库

34岁安卓开发大叔感慨,帮你突破瓶颈

欢喜学安卓

android 程序员 面试 移动开发

从工单到需求管理,企业如何快速响应客户反馈?

万事ONES

项目管理 需求管理 需求 ONES

架構實戰營 - 模塊 6 作業

Frank Yang

架构实战营

顶级程序员都是如何诞生的?

Nydia

话题讨论

MySQL 页完全指南——浅入深出页的原理

leonsh

MySQL 数据库 innodb

Nginx简单属性和使用总结

赵镇

Cookie常见面试题

悟空聊架构

缓存 面试 Cookie 6月日更

第6模块作业

高亮

架构训练营

架构实战营 模块六课后作业

iProcess

架构实战营

活久见!低访问量竟然也能导致系统问题

三石

mycat

【Flutter 专题】128 图解 ColorTween 颜色补间动画 & ButtonBar 按钮容器

阿策小和尚

Flutter 小菜 0 基础学习 Flutter Android 小菜鸟 6月日更

模块六:课后作业

菲尼克斯

架构实战营

不动如山,表备份硬核技术:物理细粒度备份恢复

华为云开发者联盟

集群 数仓 Roach 物理细粒度 备份恢复

【Vue2.x 源码学习】第二十篇 - 使用真实节点替换原始节点

Brave

源码 vue2 6月日更

Linux之mkdir命令

入门小站

Linux

Python——双向队列 (deque)

在即

6月日更

EasyRecovery,拯救那些遗失的文件

淋雨

文件恢复 Easyrecovery破解 数据恢复软件 免费数据恢复

共享存储设备,如何实现差异化IO分配策略

怀瑾握瑜

云计算 负载均衡 存储 数据中心 SSD

Flink集成hive测试及生产规划

一弦思华年

大数据 hive 实时数仓 数仓 flink 执行

从 Flutter 和前端角度出发,聊聊单线程模型下如何保证 UI 流畅性

魅影

大前端 事件驱动 Event iOS 知识体系

HarmonyOS学习路之开发篇——Data Ability

爱吃土豆丝的打工人

HarmonyOS Ability 鸿蒙 Ability Data Ability

在 FIFA 20 将技能相似球员进行分组(2):层次聚类_AI&大模型_Jaemin Lee_InfoQ精选文章