写点什么

在 FIFA 20 将技能相似球员进行分组(2):层次聚类

  • 2020-09-22
  • 本文字数:2195 字

    阅读完需:约 7 分钟

在 FIFA 20 将技能相似球员进行分组(2):层次聚类

理解层次聚类

  • 与 K-均值聚类算法(K-means)不同,不需要指定聚类的数量。

  • 结果汇总在树状图,树状图可以方便地解释数据和选择任何数量的聚类。

基本思路

  • 专注 :自下而上(又称凝聚聚类(Agglomerative clustering))

  • 从单个观察开始(又称 叶子 )开始,作为聚类。

  • 通过将叶子合并成 树枝 向上移动。

  • 将树枝与其他叶子或树枝合并。

  • 最终,当所有的东西都合并到一个聚类时,到达顶端。



树状图示例。

解释树状图

  • 在适当的高度上进行切割,以获得所需聚类的 #。

  • 垂直轴:相异度度量(或距离)——两个聚类合并的高度。

  • 高度表示聚类的相似性。

  • 较低的高度更相似

  • 水平轴并不表示相似性。

  • 交换左右分支并不影响树状图的意义。

它如何衡量聚类之间的差异?

  1. 基于度量(最常见的是曼哈顿距离(Manhattan distance)或欧几里得距离(Euclidean distance,亦称欧氏距离))。

  2. 最长距离法(Complete linkage)(即最远邻法(furthest-neighbor))

  3. 最短距离法(Single linkage)(即最近邻法(nearest-neighbor))

  4. 平均距离法(Average linkage)

  5. 质心距离法(Centroid linkage)

  6. 2, 基于相关性的距离

  7. 查找观测值之间的相关性。

层次聚类的缺点

  1. 计算成本高——不适用于大数据集。

  2. ,而表示 K-均值。

  3. 对噪声和离群值敏感。

使用层次聚类对 FIFA20 的球员进行分组

数据清理/预处理(第一部分中的代码)

import pandas as pdimport numpy as npdf = pd.read_csv("/content/players_20.csv")df = df[['short_name','age', 'height_cm', 'weight_kg', 'overall', 'potential','value_eur', 'wage_eur', 'international_reputation', 'weak_foot','skill_moves', 'release_clause_eur', 'team_jersey_number','contract_valid_until', 'nation_jersey_number', 'pace', 'shooting','passing', 'dribbling', 'defending', 'physic', 'gk_diving','gk_handling', 'gk_kicking', 'gk_reflexes', 'gk_speed','gk_positioning', 'attacking_crossing', 'attacking_finishing','attacking_heading_accuracy', 'attacking_short_passing','attacking_volleys', 'skill_dribbling', 'skill_curve','skill_fk_accuracy', 'skill_long_passing', 'skill_ball_control','movement_acceleration', 'movement_sprint_speed', 'movement_agility','movement_reactions', 'movement_balance', 'power_shot_power','power_jumping', 'power_stamina', 'power_strength', 'power_long_shots','mentality_aggression', 'mentality_interceptions','mentality_positioning', 'mentality_vision', 'mentality_penalties','mentality_composure', 'defending_marking', 'defending_standing_tackle','defending_sliding_tackle','goalkeeping_diving','goalkeeping_handling', 'goalkeeping_kicking','goalkeeping_positioning', 'goalkeeping_reflexes']]df = df[df.overall > 86] # extracting players with overall above 86df = df.fillna(df.mean())names = df.short_name.tolist() # saving names for laterdf = df.drop(['short_name'], axis = 1) # drop the short_name columndf.head()
复制代码

标准化数据

from sklearn import preprocessingx = df.values # numpy arrayscaler = preprocessing.MinMaxScaler()x_scaled = scaler.fit_transform(x)X_norm = pd.DataFrame(x_scaled)
复制代码

基于平均距离法的层次聚类

import matplotlib.pyplot as pltimport scipy.cluster.hierarchy as sch# plot dendrogram using average linkageplt.figure(figsize=(10,14))plt.title('Hierarchical Clustering Dendrogram with Average Linkage')dendrogram = sch.dendrogram(sch.linkage(X_norm, method="average"), labels= names, leaf_font_size = 13, orientation='right')
复制代码



  • 分成两组:守门员和其他人

最短距离法

# plot dendrogram using single linkageplt.figure(figsize=(10,14))plt.title('Hierarchical Clustering Dendrogram with Single Linkage')dendrogram = sch.dendrogram(sch.linkage(X_norm, method="single"), labels= names, leaf_font_size = 13, orientation='right')
复制代码



分为守门员和其他人

质心距离法

# plot dendrogram using centroid linkageplt.figure(figsize=(10,14))plt.title('Hierarchical Clustering Dendrogram with Centroid Linkage')dendrogram = sch.dendrogram(sch.linkage(X_norm, method="centroid"), labels= names, leaf_font_size = 13, orientation='right')
复制代码



  • 再次分成守门员和其他人。

最长距离法

# plot dendrogram using complete linkageplt.figure(figsize=(10,14))plt.title('Hierarchical Clustering Dendrogram with Complete Linkage')dendrogram = sch.dendrogram(sch.linkage(X_norm, method="complete"), labels= names, leaf_font_size = 13, orientation='right')
复制代码


结论

最长距离法似乎是将球员进行最准确地分组的方法!


感谢阅读本文,希望对你有所启迪。


本文的 GitHub 仓库:https://github.com/importdata/Clustering-FIFA-20-Players


作者介绍


Jaemin Lee,Jaemin Lee,专攻数据分析与数据科学,数据科学应届毕业生。


原文链接


https://towardsdatascience.com/grouping-soccer-players-with-similar-skillsets-in-fifa-20-part-2-hierarchical-clustering-839705f6d37d?source=---------0-----------------------


2020-09-22 10:031194

评论

发布
暂无评论
发现更多内容

【荣耀云调试FAQ】一个帐号可以同时使用多部手机吗?

荣耀开发者服务平台

开发者 手机 安卓 荣耀 honor

安势清源SCA助力超大规模高科技企业加速开源风险治理

安势信息

开源 腾讯 SCA SBOM 软件供应链安全

2022年10月中国数据库排行榜:达梦冲刺IPO热度不减,PolarDB立足创新夺锦才

墨天轮

数据库 opengauss tdsql TiDB 国产数据库

几个你必须知道的React错误实践

xiaofeng

React

OPPO 引力计划全方位升级,与开发者共建折叠屏上繁荣生态

Geek_2d6073

云管平台常见问题汇总解答-行云管家

行云管家

云计算 企业上云 云管理

CentOS下搭建Gitea-自己的git服务器

麦洛

git Gitea

企业云安全的6个最佳实践

HummerCloud

10月月更

人人能读懂redux原理剖析

夏天的味道123

React

微服务是开发架构对三高场景的妥协吗?

NoGirlfriendDeFoundException

架构 微服务 单体架构 云平台

保10万涨薪、保Offer、保大厂,1V1私教服务上线啦!

霍格沃兹测试开发学社

利器| Cypress 强大全新的 Web UI 测试框架应用尝鲜

霍格沃兹测试开发学社

推荐|海泰政务移动办公系统密码应用解决方案 打造移动办公安全

电子信息发烧客

欧美开源法案频出,你准备好了吗?

安势信息

出海 #开源 SBOM 软件供应链安全 开源合规

议程剧透!1个主论坛4场Workshop,龙蜥操作系统峰会盛大来袭 | 2022 云栖大会

OpenAnolis小助手

开源 报名 云栖大会 论坛 龙蜥操作系统峰会

redis实现分布式锁(二)

zarmnosaj

10月月更

推荐|海泰信创浏览器安全解决方案 全面适配安全可靠

电子信息发烧客

哪些数据类岗位不容易失业?

雨果

开发数据 数据科学 数据工程师

经常被问到的react-router实现原理详解

夏天的味道123

React

5个技巧让CIO最大化提升IT项目投资回报率

雨果

CIO ROI

年度大促将至,企业如何进行性能压测

阿里巴巴云原生

阿里云 云原生 性能压测 PTS

自定义注解判断参数为空

派大星

React-hooks+TypeScript最佳实战

xiaofeng

React

STM32 HAL库串口同时收发,接收卡死?

矜辰所致

串口 STM32L051 10月月更

解React框架核心原理

夏天的味道123

React

Gartner 权威解读: SBOM 采用率将于2025年达到60%

SEAL安全

DevSecOps Gartner SBOM 软件供应链安全

保10万涨薪、保Offer、保大厂,1V1私教服务上线啦!

测吧(北京)科技有限公司

测试

Redis 底层数据结构说明

water

长安链源码分析之网络模块 net-liquid(3)

如何将 SAP Business Application Studio 里开发的 Java 应用部署到 SAP BTP 上

汪子熙

云原生 Cloud 云平台 SAP 10月月更

React-Hook最佳实践

xiaofeng

React

在 FIFA 20 将技能相似球员进行分组(2):层次聚类_AI&大模型_Jaemin Lee_InfoQ精选文章