速来报名!AICon北京站鸿蒙专场~ 了解详情
写点什么

斯坦福开源 Python 库 StanfordNLP,可处理 53 种人类语言

  • 2019-03-18
  • 本文字数:2829 字

    阅读完需:约 9 分钟

斯坦福开源Python库StanfordNLP,可处理53种人类语言

近期,斯坦福大学自然语言处理小组开发了一个 Python 库 StanfordNLP,用于解决许多常见的自然语言处理问题,可以处理多达 53 种人类语言模型,便于数据科学家和 Python 开发人员使用。

语言

StanfordNLP 提供了针对53种人类语言的预训练的深度学习模型,并使用PyTorch作为其机器学习的入门。


每种语言都有一个treebank,它是一个巨大的文本数据集,为语法结构/语义内容进行了可靠的注释。对于某些语言,库中提供了不只一个 treebank。


如果你想要拥有自己的带注释的语料库(这种情况并不常见!),那么你可以基于语料库训练一个新的模型。



解析这句话!

范围

这个库提供下列服务:


  • 将给定的文本分成句子和单词(符号化)。符号化是指将一个文本(“The day of the groundhog attracts attention”)转换成七个单词的序列(“The”,“day”,“of”,“The”,“groundhog”,“caught”,“attention”)。

  • 为给定的单词指定一个基本形式(词形归并)。词形归并工具会将“attraction”、“attractive”和“attractive”与同一个词形(例如“attract”)联系起来。

  • 在一个句子中,把单词和词性联系起来。所以“day”是名词,“attract”是动词。

  • 单词有形态特征,如单数或现在进行时。这个库也会提供帮助。

  • 它还可以产生句子的句法结构。

  • 最后,StanfordNLP 可以与名气更大、应用范围更广泛的 Stanford CoreNLP 进行整合。


在这篇文章中,我们将探讨符号化、词性和形态学特征。



StanfordNLP 管道

管道

Vish (Ishaya) Abrams 在文章中很好地解释了机器学习中的管道。为了这个目的,我们可以将库看作是一组组件的序列,这些组件的执行方式是,一个组件的输出是另一个组件的输入(一部分)。这种设计允许替换管道中的一个专用组件,同时保留其余组件。


考虑到文本在管道中流动,那么文本会经过不同步骤的处理。


在 StanfordNLP 中,管道与语言和 treebank 相关联。详细信息请看这里(https://stanfordnlp.github.io/stanfordnlp/pipeline.html),但你现在还不需要它们。StanfordNLP 管道用于模型评估,而不是模型训练。

安装

在进行其他步骤之前,我们需要先安装这个库。Python 3.6 或之后的版本可用。正如开发人员所解释的,安装 StanfordNLP 最简单的方法是使用 pip:


pip install stanfordnlp


之后,下载我们想要使用的语言,例如:


import stanfordnlp

#You only download languages once

#Each language requires more that 1GB of disk space

#It takes time… have a coffee!

stanfordnlp.download(‘en’)

stanfordnlp.download(‘es’)

stanfordnlp.download(‘fr’)


接下来是在哪里存储下载的语言包。这一步我们建议使用缺省值。下载完成后,你可以检查每种语言都有一个对应的文件夹,其中保存了许多 PyTorch 模型,这些模型将用于我们将要介绍的各种 NLP 任务。

词性标注及其有用的原因

词性标注是复杂的 NLP 活动中的一项基本任务。想一下文本分类、情感分析或信息索引和检索。建立文本的基本语法结构为进一步的文本处理奠定了基础。

解析和标记一个句子

我们以下面的法语为例:


Si ce discours semble trop long pour être lu en une fois, on le pourra distinguer en six parties (René Descartes, Discourse on the method)

中文大意:如果这句话对于你来说太长了,不能一次读完,你可以把它分为六部分(雷内·笛卡尔,关于方法的言论)


但是别担心,我们会把这句话变得简短很多!让我们来分析笛卡尔的句子,评估一下每个单词在其中的作用。符号化和词性标注开始发挥作用。


import stanfordnlp# English is the default language, so you# just invoke stanfordnlp.Pipeline()# For Spanish you would call # stanfordnlp.Pipeline(lang="es", treebank="es_ancora")# This sets up a neural pipeline in Frenchnlp = stanfordnlp.Pipeline(lang="fr", treebank="fr_gsd")# a document is made of sentencesdoc = nlp("Si ce discours semble trop long pour être lu en une fois, on le pourra distinguer en six parties")# we pick our first and only sentenceonly_sentence = doc.sentences[0]
# a sentence is made of words. # Each word is tagged with a part of speech (POS)# Good pythonic guys prefer list comprehensions over for loops!print(" ". join(["{} ({})".format(word.text, word.upos) for word in only_sentence.words]))
复制代码


在一些信息量丰富的消息之后,我们得到单词列表,每个单词都附在其相应的词性上:


Si (SCONJ) ce (DET) discours (NOUN) semble (VERB) trop (ADV) long (ADJ) pour (ADP) être (AUX) lu (VERB) en (ADP) une (DET) fois (NOUN) , (PUNCT) on (PRON) le (PRON) pourra (VERB) distinguer (VERB) en (ADP) six (NUM) parties (NOUN)
复制代码


以上这些可以告诉我们,six 是一个数字决定因素,而 parties 是一个名词。请注意,当 lu 被标识为动词时, être 被标记为助动词。


StanfordNLP 利用了语音集的通用部分,它的优点是适用于多种语言。但是,只要有 treebank 的支持,属性 pos 也会使用和显示语言的特定词性。其他 NLP 库(如spacy)也使用通用的和某种语言特有的语音集部分。



Chomsky 的玩笑

处理一词多义

现在我们用这个库开个小玩笑。我们想知道这个英语句子的词性:


I book the book while you stand by the stand


在同一个句子中,不仅 book 和 stand 有两种不同的含义。它们也充当动词和名词。运行这句话的类似代码,我们会得到:


I (PRON) book (VERB) the (DET) book (NOUN) while (SCONJ) you (PRON) stand (VERB) by (ADP) the (DET) stand (NOUN)
复制代码


我用这个简单的例子引起读者的注意力,它表明词性标记已经超出了在字典中查找单词,词的句法结构决定了词性。这就是伴随着库出现的学习模型在显示其作用。

形态学特征

除了通用形式和特定于语言形式的词性外,这个库中的单词分类里还带有单词的形态特征(请注意文档中可能出现的一个故障,该属性在文档中被称为 ufeats)。


我们运行以下代码:


en_nlp = stanfordnlp.Pipeline()doc = en_nlp("My taylor is drunk") only_sentence = doc.sentences[0]print(" ". join(["{} ({} - {})".format(word.text, word.upos, word.feats) for word in only_sentence.words]))
复制代码


我们得到:


My (PRON - Number=Sing|Person=1|Poss=Yes|PronType=Prs)taylor (NOUN - Number=Sing) is (AUX - Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin) drunk (ADJ - Degree=Pos)
复制代码


每个词都有自己的特点,但不只是名词和动词。要理解上述内容,可以查找此索引。例如,Degree=Pos 意味着positive,一级。注意,drunk 被定义为形容词,不是动词。

关闭

我想今天这些就够了。我们喜欢库,觉得使用它很舒服。当文档不足时,你可以查看源代码来帮助你理解。接下来,我们将完成对 StanfordNLP 提供的其他功能的理解。


更多信息:https://gitconnected.com/learn/python


原文链接:https://levelup.gitconnected.com/first-look-at-stanfordnlp-2b7d43190957


2019-03-18 17:473932
用户头像

发布了 124 篇内容, 共 45.9 次阅读, 收获喜欢 176 次。

关注

评论

发布
暂无评论
发现更多内容

Instagram帖子如何隐藏喜欢和查看计数?

理理

科大讯飞t20pro和t10区别 对比评测

妙龙

科大讯飞 学习机

Turbo Boost Switcher Pro for mac(cpu温度监测工具)

Mac相关知识分享

cpu

Rootstock 携手 Footprint Analytics:以数据洞察力加速 DeFi 生态系统发展

Footprint Analytics

比特币 区块链、

科大讯飞学习机p30和t20pro 区别

妙龙

科大讯飞 学习机

科大讯飞t20pro和X3 Pro选哪个

妙龙

科大讯飞 学习机

10个你可能不知道的Gmail技巧

理理

系统综合清理软件MacCleaner Pro for Mac

Mac相关知识分享

Mac清理软件 系统清理

中文版Final Cut Pro (fcpx剪辑) 如何导出Alpha通道透明视频?绿幕抠图

理理

【YashanDB数据库】Yashandb表闪回业务表实践

YashanDB

yashandb 崖山数据库 崖山DB

特权账号的“三生三世”:识别、监测、审计

极盾科技

数据安全 特权账号

mac视频下载器Downie下载vip会员视频教程分享

理理

工作五年后,做技术还是做管理?

老张

技术管理 职场成长 技术专家

Bettertouchtool for Mac(鼠标增强软件)

Mac相关知识分享

Mac软件 触控板增强工具

小程序技术为什么被称为轻量级前端架构?

Geek_2305a8

TextIn文档树引擎,助力RAG知识库问答检索召回能力提升

合合技术团队

科技 文档识别 PDF解析

望繁信科技与金智维达成金融行业独家战略合作,共塑数字化转型新格局

望繁信科技

数字化转型 金融行业 流程挖掘 数字员工 流程智能

TapData 信创数据源 | 国产信创数据库 PolarDB MySQL 数据同步指南,加速国产化进程,推进自主创新建设

tapdata

3D地球模拟软件Earth 3D for Mac

Mac相关知识分享

Mac软件 软件下载

CAD迷你看图 for Mac(MiniCAD) v4.4.5特别版

Mac相关知识分享

看图软件 CAD迷你看图

Fantastical for mac六项功能,让日程管理更加便捷!

理理

供应行业怎么定义?行业也需要堡垒机吗?

行云管家

网络安全 堡垒机 供应行业

24年湖北正规等保测评机构名称以及地址看这里!

行云管家

湖北 等保 等级测评

选择全周期项目管理系统的5大技巧

爱吃小舅的鱼

项目管理 PLM

Mac mini 将迎来重大设计更新,将成为“苹果有史以来最小的电脑”

理理

office Mac版激活失败 怎么解决office激活失败的问题

理理

iToolab UnlockGo for mac(苹果设备解锁工具)使用教程

理理

仿冒网站横行,奥运会票务网站安全性遭质疑,SSL证书成关键

国科云

工作中遇到的RSA问题,这里或许能找到答案

三七互娱后端技术团队

非对称加密 rsa

如何更改Apple Watch上的表盘?(含苹果手表表盘素材)

理理

Cinema 4D 2023常见问题:c4d 2023看不到新的加厚和对称对象怎么办?

理理

斯坦福开源Python库StanfordNLP,可处理53种人类语言_AI&大模型_Angel Salamanca_InfoQ精选文章