硬核干货——《中小企业 AI 实战指南》免费下载! 了解详情
写点什么

斯坦福开源 Python 库 StanfordNLP,可处理 53 种人类语言

  • 2019-03-18
  • 本文字数:2829 字

    阅读完需:约 9 分钟

斯坦福开源Python库StanfordNLP,可处理53种人类语言

近期,斯坦福大学自然语言处理小组开发了一个 Python 库 StanfordNLP,用于解决许多常见的自然语言处理问题,可以处理多达 53 种人类语言模型,便于数据科学家和 Python 开发人员使用。

语言

StanfordNLP 提供了针对53种人类语言的预训练的深度学习模型,并使用PyTorch作为其机器学习的入门。


每种语言都有一个treebank,它是一个巨大的文本数据集,为语法结构/语义内容进行了可靠的注释。对于某些语言,库中提供了不只一个 treebank。


如果你想要拥有自己的带注释的语料库(这种情况并不常见!),那么你可以基于语料库训练一个新的模型。



解析这句话!

范围

这个库提供下列服务:


  • 将给定的文本分成句子和单词(符号化)。符号化是指将一个文本(“The day of the groundhog attracts attention”)转换成七个单词的序列(“The”,“day”,“of”,“The”,“groundhog”,“caught”,“attention”)。

  • 为给定的单词指定一个基本形式(词形归并)。词形归并工具会将“attraction”、“attractive”和“attractive”与同一个词形(例如“attract”)联系起来。

  • 在一个句子中,把单词和词性联系起来。所以“day”是名词,“attract”是动词。

  • 单词有形态特征,如单数或现在进行时。这个库也会提供帮助。

  • 它还可以产生句子的句法结构。

  • 最后,StanfordNLP 可以与名气更大、应用范围更广泛的 Stanford CoreNLP 进行整合。


在这篇文章中,我们将探讨符号化、词性和形态学特征。



StanfordNLP 管道

管道

Vish (Ishaya) Abrams 在文章中很好地解释了机器学习中的管道。为了这个目的,我们可以将库看作是一组组件的序列,这些组件的执行方式是,一个组件的输出是另一个组件的输入(一部分)。这种设计允许替换管道中的一个专用组件,同时保留其余组件。


考虑到文本在管道中流动,那么文本会经过不同步骤的处理。


在 StanfordNLP 中,管道与语言和 treebank 相关联。详细信息请看这里(https://stanfordnlp.github.io/stanfordnlp/pipeline.html),但你现在还不需要它们。StanfordNLP 管道用于模型评估,而不是模型训练。

安装

在进行其他步骤之前,我们需要先安装这个库。Python 3.6 或之后的版本可用。正如开发人员所解释的,安装 StanfordNLP 最简单的方法是使用 pip:


pip install stanfordnlp


之后,下载我们想要使用的语言,例如:


import stanfordnlp

#You only download languages once

#Each language requires more that 1GB of disk space

#It takes time… have a coffee!

stanfordnlp.download(‘en’)

stanfordnlp.download(‘es’)

stanfordnlp.download(‘fr’)


接下来是在哪里存储下载的语言包。这一步我们建议使用缺省值。下载完成后,你可以检查每种语言都有一个对应的文件夹,其中保存了许多 PyTorch 模型,这些模型将用于我们将要介绍的各种 NLP 任务。

词性标注及其有用的原因

词性标注是复杂的 NLP 活动中的一项基本任务。想一下文本分类、情感分析或信息索引和检索。建立文本的基本语法结构为进一步的文本处理奠定了基础。

解析和标记一个句子

我们以下面的法语为例:


Si ce discours semble trop long pour être lu en une fois, on le pourra distinguer en six parties (René Descartes, Discourse on the method)

中文大意:如果这句话对于你来说太长了,不能一次读完,你可以把它分为六部分(雷内·笛卡尔,关于方法的言论)


但是别担心,我们会把这句话变得简短很多!让我们来分析笛卡尔的句子,评估一下每个单词在其中的作用。符号化和词性标注开始发挥作用。


import stanfordnlp# English is the default language, so you# just invoke stanfordnlp.Pipeline()# For Spanish you would call # stanfordnlp.Pipeline(lang="es", treebank="es_ancora")# This sets up a neural pipeline in Frenchnlp = stanfordnlp.Pipeline(lang="fr", treebank="fr_gsd")# a document is made of sentencesdoc = nlp("Si ce discours semble trop long pour être lu en une fois, on le pourra distinguer en six parties")# we pick our first and only sentenceonly_sentence = doc.sentences[0]
# a sentence is made of words. # Each word is tagged with a part of speech (POS)# Good pythonic guys prefer list comprehensions over for loops!print(" ". join(["{} ({})".format(word.text, word.upos) for word in only_sentence.words]))
复制代码


在一些信息量丰富的消息之后,我们得到单词列表,每个单词都附在其相应的词性上:


Si (SCONJ) ce (DET) discours (NOUN) semble (VERB) trop (ADV) long (ADJ) pour (ADP) être (AUX) lu (VERB) en (ADP) une (DET) fois (NOUN) , (PUNCT) on (PRON) le (PRON) pourra (VERB) distinguer (VERB) en (ADP) six (NUM) parties (NOUN)
复制代码


以上这些可以告诉我们,six 是一个数字决定因素,而 parties 是一个名词。请注意,当 lu 被标识为动词时, être 被标记为助动词。


StanfordNLP 利用了语音集的通用部分,它的优点是适用于多种语言。但是,只要有 treebank 的支持,属性 pos 也会使用和显示语言的特定词性。其他 NLP 库(如spacy)也使用通用的和某种语言特有的语音集部分。



Chomsky 的玩笑

处理一词多义

现在我们用这个库开个小玩笑。我们想知道这个英语句子的词性:


I book the book while you stand by the stand


在同一个句子中,不仅 book 和 stand 有两种不同的含义。它们也充当动词和名词。运行这句话的类似代码,我们会得到:


I (PRON) book (VERB) the (DET) book (NOUN) while (SCONJ) you (PRON) stand (VERB) by (ADP) the (DET) stand (NOUN)
复制代码


我用这个简单的例子引起读者的注意力,它表明词性标记已经超出了在字典中查找单词,词的句法结构决定了词性。这就是伴随着库出现的学习模型在显示其作用。

形态学特征

除了通用形式和特定于语言形式的词性外,这个库中的单词分类里还带有单词的形态特征(请注意文档中可能出现的一个故障,该属性在文档中被称为 ufeats)。


我们运行以下代码:


en_nlp = stanfordnlp.Pipeline()doc = en_nlp("My taylor is drunk") only_sentence = doc.sentences[0]print(" ". join(["{} ({} - {})".format(word.text, word.upos, word.feats) for word in only_sentence.words]))
复制代码


我们得到:


My (PRON - Number=Sing|Person=1|Poss=Yes|PronType=Prs)taylor (NOUN - Number=Sing) is (AUX - Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin) drunk (ADJ - Degree=Pos)
复制代码


每个词都有自己的特点,但不只是名词和动词。要理解上述内容,可以查找此索引。例如,Degree=Pos 意味着positive,一级。注意,drunk 被定义为形容词,不是动词。

关闭

我想今天这些就够了。我们喜欢库,觉得使用它很舒服。当文档不足时,你可以查看源代码来帮助你理解。接下来,我们将完成对 StanfordNLP 提供的其他功能的理解。


更多信息:https://gitconnected.com/learn/python


原文链接:https://levelup.gitconnected.com/first-look-at-stanfordnlp-2b7d43190957


2019-03-18 17:474141
用户头像

发布了 124 篇内容, 共 49.0 次阅读, 收获喜欢 177 次。

关注

评论

发布
暂无评论
发现更多内容

外包学生管理系统的架构

feitian

模块三 作业

SAKIN

如何用Camtasia给视频添加字幕?

淋雨

视频剪辑 Camtasia 录屏软件

模块三-学生管理系统详细设计

绝影

架构训练营

架构实战营模块3作业

Morphling

#架构实战营

架构实战营 模块三 作业

三叔叔_拖延症晚期

悲剧!IDEA 突然找不到类了?

楼下小黑哥

Java 后端 IDEA

架构实战营第一期 -- 模块三作业

clay

架构实战营

模块三作业

VE

架构实战营

Python OpenCV 学习轻松点,复习一下模板匹配吧

梦想橡皮擦

Python 7月日更

模块3作业“学生管理系统”架构设计

王小森

模块三:学生管理系统架构详细设计

柱林

【架构训练营】模块三作业

zclau

Vue进阶(幺捌陆):异步请求导致页面数据渲染错误问题解决

No Silver Bullet

Vue 异步请求 7月日更 $set

测评EasyRecovery的数据恢复效果与多种功能

淋雨

EasyRecovery 文件恢复 硬盘数据恢复

如何实现高效联表查询

迹_Jason

Java MySQL redis 缓存 分布式

Linux之killall命令

入门小站

Linux

在线正则表达式大全测试

入门小站

深入浅出Node.js第一章阅读总结

Alex

JavaScript node.js

告别尴尬-找回MySQL数据库密码

龙眼果

MySQL

架构实战营模块 3 作业

zlz

OPPO小布助手算法系统的探索、实践与思考

OPPO小布助手

人工智能 深度学习 对话 智能助手 智能对话

外包学生管理系统架构文档

tjudream

架构 架构文档 学生选课

学生管理系统详细架构设计

宁静志远

架构实战营

架构实战营 - 模块 3 - 作业

Vincent

#架构实战营

模块三作业

Mr.He

架构实战营

外包学生管理系统的架构文档

木云先森

架构实战营

抖音引流获客APP系统开发

获客I3O6O643Z97

抖音霸屏 抖音、快手获客系统

模块三:外包学生管理系统架构文档

Testcase

架构实战营

架构实战营模块三作业

tt

架构实战营

顶级高手改变模型|靠谱点评

无量靠谱

斯坦福开源Python库StanfordNLP,可处理53种人类语言_AI&大模型_Angel Salamanca_InfoQ精选文章