写点什么

多任务学习在推荐算法中的应用(三)

  • 2020-01-07
  • 本文字数:2313 字

    阅读完需:约 8 分钟

多任务学习在推荐算法中的应用(三)
  1. 阿里 ESM2


Conversion Rate Prediction via Post-Click Behaviour Modeling


前面已经介绍过一种基于多任务学习的 CVR 预估模型 ESMM,但对于 CVR 预估来说,ESMM 模型仍面临一定的样本稀疏问题,因为 click 到 buy 的样本非常少。但其实一个用户在购买某个商品之前往往会有一些其他的行为,比如将商品加入购物车或者心愿单。如下图所示:



文中把加购物车或者心愿单的行为称作 Deterministic Action ( DAction ),表示购买目的很明确的一类行为。而其他对购买相关性不是很大的行为称作 Other Action ( OAction )。那原来的 Impression→Click→Buy 购物过程就变为:



Impression→Click→DAction/OAction→Buy 过程。


ESM2 模型结构:



那么该模型的多个任务分别是:


❶ Y1:点击率


❷ Y2:点击到 DAction 的概率


❸ Y3:DAction 到购买的概率


❹ Y4:OAction 到购买的概率


并且从上图看出,模型共有 3 个 loss,计算过程分别是:


❶ pCTR:Impression→Click 的概率是第一个网络的输出。


❷ pCTAVR:Impression→Click→DAction 的概率,pCTAVR = Y1 * Y2,由前两个网络的输出结果相乘得到。


❸ pCTCVR:


Impression→Click→DAction/OAction→Buy 的概率,pCTCVR = CTR * CVR = Y1 * [(1 - Y2) * Y4 + Y2 * Y3],由四个网络的输出共同得到。其中 CVR=(1 - Y2) * Y4 + Y2 * Y3。是因为从点击到 DAction 和点击到 OAction 是对立事件。


随后通过三个 logloss 分别计算三部分的损失:



最终损失函数由三部分加权得到:



  1. YouTube 多目标排序系统


Recommending What Video to Watch Next: A Multitask Ranking System


本文主要解决了视频推荐场景下普遍存在的两个问题:


❶ 视频推荐中的多任务目标。比如不仅需要预测用户是否会观看外,还希望去预测用户对于视频的评分,是否会关注该视频的上传者,否会分享到社交平台等。


❷ 偏置信息。比如用户是否会点击和观看某个视频,并不一定是因为他喜欢,可能仅仅是因为它排在推荐页的最前面,这会导致训练数据产生位置偏置的问题。


模型结构:



从上图可知,整个模型需要预测两大类目标,分别是:


❶ Engagement objectives:主要预测用户是否点击和观看视频的时长。其中通过二分类模型来预测用户的点击行为,而通过回归模型来预测用户观看视频的时长。


❷ Satisfaction objectives:主要预测用户在观看视频后的反馈。其中使用二分类模型来预测用户是否会点击喜欢该视频,而通过回归模型来预测用户对于视频的评分。


模型中有两个比较重要的结构:Multi-gate Mixture-of-Experts ( MMoE ) 和消除位置偏置的 shallow tower。


MMoE 的结构为:



Shallow tower 的结构为:



通过一个 shallow tower 来预测位置偏置信息,输入的特征主要是一些和位置偏置相关的特征,输出的是关于 selection bias 的 logits 值。然后将该输出值加到子任务模型中最后 sigmoid 层前,在预测阶段,则不需要考虑 shallow tower 的结果。值得注意的是,位置偏置信息主要体现在 CTR 预估中,而预测用户观看视频是否会点击喜欢或者用户对视频的评分这些任务,是不需要加入位置偏置信息的。


  1. 知乎推荐页 Ranking 模型


上图是知乎在推荐场景下使用的多目标模型,预测的任务包括点击率、收藏率、点赞率、评论率等,共 8 个目标。可以看出知乎的做法也是底层 embedding 和 DNN 前几层权重设置成共享。损失函数可设置成这几个 task 的简单线性加权和。上线后线上性能:点击率基本不变,而其他的几个指标,比如点赞,收藏大幅提升。


  1. 美图推荐排序多任务


模型结构:


如上图,Multi-task NFwFM 模型的前几个隐层是共享的。在最后即将预估多个目标时通过全连接层进行拆分,各自学习对应任务的参数,从而专注地拟合各自任务。在线上预估时,因为模型尺寸没有变化,推理效率和线上的点击率预估模型一致。考虑到我们是在点击率任务的基础上同时优化关注转化率,融合公式上体现为优先按照点击率排序再按照曝光→关注的转化率排序。Multi-task NFwFM 已在美图秀秀社区首页 Feeds 推荐、相关推荐下滑流全量上线。首页 Feeds 点击率+1.93%,关注转化率+2.90%,相关推荐下滑流人均浏览时长+10.33%,关注转化率+9.30%。


  1. 小结


当我们在推荐场景需要同时优化多个目标时,多任务学习就可以派上用场。那反过来思考一个问题,在什么样的情况下,多任务学习会没效果呢?其实也很容易想到,当多个任务的相关性没那么强时,这些任务之间就会相互扰乱,从而影响最后的效果。


最后总结下现在多任务学习模型的主要使用方式:


❶ 底层 embedding 和 mlp 参数共享,上层演化出各个任务的分支,最后 loss 函数是各个任务的简单加权和。


❷ 通过多任务之间的关系来建模出新的 loss 函数,比如阿里的 ESSM,ESSM2。


❸ 通过 Multi-gate Mixture-of-Experts ( MMoE ) 这种特殊的多任务结构来学习出不同任务的权重,比如 YouTube 的多任务模型。


参考链接:


https://arxiv.org/pdf/1804.07931.pdf


https://www.jianshu.com/p/35f00299c059


https://arxiv.org/pdf/1805.10727.pdf


https://www.jianshu.com/p/aba30d1726ae


https://tech.meituan.com/2018/03/29/recommend-dnn.html


https://zhuanlan.zhihu.com/p/70940522


https://arxiv.org/abs/1910.07099


https://www.jianshu.com/p/c06e9ed08dd1


https://www.jianshu.com/p/2f3dbbfc16a6


https://zhuanlan.zhihu.com/p/89401911


知乎推荐页 Ranking


原文链接:


https://zhuanlan.zhihu.com/p/78762586


https://zhuanlan.zhihu.com/p/91285359


本文转载自 DataFunTalk 公众号。


原文链接:https://mp.weixin.qq.com/s?__biz=MzU1NTMyOTI4Mw==&mid=2247496333&idx=1&sn=da03f8db68e5276cffe73e090ac271ec&chksm=fbd740e1cca0c9f76da90a713311bac81e9890c1f9fd69976705e167dd30e4135db6ea297d6b&scene=27#wechat_redirect


2020-01-07 09:501447

评论

发布
暂无评论
发现更多内容

用60行代码实现一个高性能的圣诞抽抽乐H5小游戏(含源码)

徐小夕

Java 大前端 H5游戏 H5

区块链信息共享应用落地搭建解决方案

t13823115967

区块链+ 区块链应用 信息共享

Mybatis动态映射,so easy啦

田维常

恕我直言!有了这份MySQL学习文档,你收藏夹里的其他MySQL学习资料都可以扔了

Java架构之路

Java 程序员 架构 面试 编程语言

了解OAuth2.0

环信

智慧警务开发,二维码定位报警系统搭建

t13823115967

智慧公安 智慧公安扫码

Scala中String和Int隐式转换的问题分析

木子李G

scala 大数据 编程 隐式转换

服务于阿里、滴滴、华为等一线互联网公司的分布式消息中间件RocketMQ核心笔记

Java架构追梦

Java 架构 面试 RocketMQ 消息中间件

助力孩子走上学霸之路,K12学习神器现已面世!

E科讯

SGY奇点交易所系统软件开发|SGY奇点交易所APP开发

系统开发

《数据结构与抽象:Java语言描述》.pdf

田维常

数据结构

区分Protobuf 3中缺失值和默认值

Gopher指北

protobuf Go 语言

DolphinDB与Elasticserach在金融数据集上的性能对比测试

DolphinDB

数据处理 金融 时序数据库 tsdb DolphinDB

EPBC环保生态链系统开发案例丨环保生态链EPBC源码平台

系统开发咨询1357O98O718

环保链APP系统开发案例

区块链BaaS应用平台开发

13828808769

还有谁比阿里人更懂SpringCloud Alibaba 呢?P8大牛纯手打笔记免费分享!

Java架构之路

Java 程序员 架构 面试 编程语言

超详细讲解!Android面试真题解析火爆全网,搞懂这些直接来阿里入职

欢喜学安卓

android 编程 程序员 面试 移动开发

iOS面试基础知识 (一)

iOSer

ios 面试 runtime 编程开发 iOS Developer

JS&Swift

ios swift

SGY奇点交易所系统软件APP开发

系统开发

动态高并发时为什么推荐ReentrantLock而不是Synchronized?

moon聊技术

JVM 并发 synchronized ReentrantLock 锁升级

某美女的程序员老公半夜都还不回家,原来是偷偷在公司看Redis+JVM+Spring cloud+MySQL技术文档

Java架构之路

Java 程序员 架构 面试 编程语言

四面腾讯pcg后端开发岗,一个星期面完成功拿到20K的offer。分享面经

Java架构之路

Java 程序员 架构 面试 编程语言

仅凭这份Java大纲笔记,我如愿拿到了阿里offer。

Java架构之路

Java 程序员 架构 面试 编程语言

请问如何短时间突击 Java 通过面试?

Java架构师迁哥

话题讨论 | 程序员自己电脑中毒是甚么体验?

xcbeyond

话题讨论

阿里架构师经验分享!啃完999页Android面试高频宝典,面试心得体会

欢喜学安卓

android 程序员 面试 移动开发

刚拿到蚂蚁金服架构师offer!大佬教你如何成为offer收割机

比伯

Java 编程 架构 面试 计算机

港美股交易系统开发框架构造简述篇

软件开发大鱼V15988750073

国际配售 港股交易系统开发 证券交易系统 资管系统 港股打新系统

Github 2020 年度报告:你以为新冠击溃了开发者?不!他们创造了更多代码...

阿里巴巴云原生

开源 Serverless 程序员 代码

新思科技最新报告显示开源安全是首要考虑因素

InfoQ_434670063458

多任务学习在推荐算法中的应用(三)_文化 & 方法_Alex-zhai_InfoQ精选文章