QCon 演讲火热征集中,快来分享技术实践与洞见! 了解详情
写点什么

聊聊并发(三)——JAVA 线程池的分析和使用

  • 2012-11-15
  • 本文字数:4481 字

    阅读完需:约 15 分钟

1. 引言

合理利用线程池能够带来三个好处。第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。但是要做到合理的利用线程池,必须对其原理了如指掌。

2. 线程池的使用

线程池的创建

我们可以通过 ThreadPoolExecutor 来创建一个线程池。

复制代码
new ThreadPoolExecutor(corePoolSize, maximumPoolSize, keepAliveTime, milliseconds,runnableTaskQueue, handler);

创建一个线程池需要输入几个参数:

  • corePoolSize(线程池的基本大小):当提交一个任务到线程池时,线程池会创建一个线程来执行任务,即使其他空闲的基本线程能够执行新任务也会创建线程,等到需要执行的任务数大于线程池基本大小时就不再创建。如果调用了线程池的 prestartAllCoreThreads 方法,线程池会提前创建并启动所有基本线程。
  • runnableTaskQueue(任务队列):用于保存等待执行的任务的阻塞队列。 可以选择以下几个阻塞队列。
    • ArrayBlockingQueue:是一个基于数组结构的有界阻塞队列,此队列按 FIFO(先进先出)原则对元素进行排序。
    • LinkedBlockingQueue:一个基于链表结构的阻塞队列,此队列按 FIFO (先进先出) 排序元素,吞吐量通常要高于 ArrayBlockingQueue。静态工厂方法 Executors.newFixedThreadPool() 使用了这个队列。
    • SynchronousQueue:一个不存储元素的阻塞队列。每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于 LinkedBlockingQueue,静态工厂方法 Executors.newCachedThreadPool 使用了这个队列。
    • PriorityBlockingQueue:一个具有优先级的无限阻塞队列。
  • maximumPoolSize(线程池最大大小):线程池允许创建的最大线程数。如果队列满了,并且已创建的线程数小于最大线程数,则线程池会再创建新的线程执行任务。值得注意的是如果使用了无界的任务队列这个参数就没什么效果。
  • ThreadFactory:用于设置创建线程的工厂,可以通过线程工厂给每个创建出来的线程设置更有意义的名字。
  • RejectedExecutionHandler(饱和策略):当队列和线程池都满了,说明线程池处于饱和状态,那么必须采取一种策略处理提交的新任务。这个策略默认情况下是 AbortPolicy,表示无法处理新任务时抛出异常。以下是 JDK1.5 提供的四种策略。
    • AbortPolicy:直接抛出异常。
    • CallerRunsPolicy:只用调用者所在线程来运行任务。
    • DiscardOldestPolicy:丢弃队列里最近的一个任务,并执行当前任务。
    • DiscardPolicy:不处理,丢弃掉。
    • 当然也可以根据应用场景需要来实现 RejectedExecutionHandler 接口自定义策略。如记录日志或持久化不能处理的任务。
  • keepAliveTime(线程活动保持时间):线程池的工作线程空闲后,保持存活的时间。所以如果任务很多,并且每个任务执行的时间比较短,可以调大这个时间,提高线程的利用率。
  • TimeUnit(线程活动保持时间的单位):可选的单位有天(DAYS),小时(HOURS),分钟(MINUTES),毫秒 (MILLISECONDS),微秒 (MICROSECONDS, 千分之一毫秒) 和毫微秒 (NANOSECONDS, 千分之一微秒)。

向线程池提交任务

我们可以使用 execute 提交的任务,但是 execute 方法没有返回值,所以无法判断任务是否被线程池执行成功。通过以下代码可知 execute 方法输入的任务是一个 Runnable 类的实例。

复制代码
threadsPool.execute(new Runnable() {
@Override
public void run() {
// TODO Auto-generated method stub
}
});

我们也可以使用 submit 方法来提交任务,它会返回一个 future, 那么我们可以通过这个 future 来判断任务是否执行成功,通过 future 的 get 方法来获取返回值,get 方法会阻塞住直到任务完成,而使用 get(long timeout, TimeUnit unit) 方法则会阻塞一段时间后立即返回,这时有可能任务没有执行完。

复制代码
Future<Object> future = executor.submit(harReturnValuetask);
try {
Object s = future.get();
} catch (InterruptedException e) {
// 处理中断异常
} catch (ExecutionException e) {
// 处理无法执行任务异常
} finally {
// 关闭线程池
executor.shutdown();
}

线程池的关闭

我们可以通过调用线程池的 shutdown 或 shutdownNow 方法来关闭线程池,它们的原理是遍历线程池中的工作线程,然后逐个调用线程的 interrupt 方法来中断线程,所以无法响应中断的任务可能永远无法终止。但是它们存在一定的区别,shutdownNow 首先将线程池的状态设置成 STOP,然后尝试停止所有的正在执行或暂停任务的线程,并返回等待执行任务的列表,而 shutdown 只是将线程池的状态设置成 SHUTDOWN 状态,然后中断所有没有正在执行任务的线程。

只要调用了这两个关闭方法的其中一个,isShutdown 方法就会返回 true。当所有的任务都已关闭后, 才表示线程池关闭成功,这时调用 isTerminaed 方法会返回 true。至于我们应该调用哪一种方法来关闭线程池,应该由提交到线程池的任务特性决定,通常调用 shutdown 来关闭线程池,如果任务不一定要执行完,则可以调用 shutdownNow。

3. 线程池的分析

流程分析:线程池的主要工作流程如下图:

从上图我们可以看出,当提交一个新任务到线程池时,线程池的处理流程如下:

  1. 首先线程池判断基本线程池是否已满?没满,创建一个工作线程来执行任务。满了,则进入下个流程。
  2. 其次线程池判断工作队列是否已满?没满,则将新提交的任务存储在工作队列里。满了,则进入下个流程。
  3. 最后线程池判断整个线程池是否已满?没满,则创建一个新的工作线程来执行任务,满了,则交给饱和策略来处理这个任务。

源码分析。上面的流程分析让我们很直观的了解了线程池的工作原理,让我们再通过源代码来看看是如何实现的。线程池执行任务的方法如下:

复制代码
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
// 如果线程数小于基本线程数,则创建线程并执行当前任务
if (poolSize >= corePoolSize || !addIfUnderCorePoolSize(command)) {
// 如线程数大于等于基本线程数或线程创建失败,则将当前任务放到工作队列中。
if (runState == RUNNING && workQueue.offer(command)) {
if (runState != RUNNING || poolSize == 0)
ensureQueuedTaskHandled(command);
}
// 如果线程池不处于运行中或任务无法放入队列,并且当前线程数量小于最大允许的线程数量,
则创建一个线程执行任务。
else if (!addIfUnderMaximumPoolSize(command))
// 抛出 RejectedExecutionException 异常
reject(command); // is shutdown or saturated
}
}

工作线程。线程池创建线程时,会将线程封装成工作线程 Worker,Worker 在执行完任务后,还会无限循环获取工作队列里的任务来执行。我们可以从 Worker 的 run 方法里看到这点:

复制代码
public void run() {
try {
Runnable task = firstTask;
firstTask = null;
while (task != null || (task = getTask()) != null) {
runTask(task);
task = null;
}
} finally {
workerDone(this);
}
}

4. 合理的配置线程池

要想合理的配置线程池,就必须首先分析任务特性,可以从以下几个角度来进行分析:

  1. 任务的性质:CPU 密集型任务,IO 密集型任务和混合型任务。
  2. 任务的优先级:高,中和低。
  3. 任务的执行时间:长,中和短。
  4. 任务的依赖性:是否依赖其他系统资源,如数据库连接。

任务性质不同的任务可以用不同规模的线程池分开处理。CPU 密集型任务配置尽可能小的线程,如配置 Ncpu+1 个线程的线程池。IO 密集型任务则由于线程并不是一直在执行任务,则配置尽可能多的线程,如 2*Ncpu。混合型的任务,如果可以拆分,则将其拆分成一个 CPU 密集型任务和一个 IO 密集型任务,只要这两个任务执行的时间相差不是太大,那么分解后执行的吞吐率要高于串行执行的吞吐率,如果这两个任务执行时间相差太大,则没必要进行分解。我们可以通过 Runtime.getRuntime().availableProcessors() 方法获得当前设备的 CPU 个数。

优先级不同的任务可以使用优先级队列 PriorityBlockingQueue 来处理。它可以让优先级高的任务先得到执行,需要注意的是如果一直有优先级高的任务提交到队列里,那么优先级低的任务可能永远不能执行。

执行时间不同的任务可以交给不同规模的线程池来处理,或者也可以使用优先级队列,让执行时间短的任务先执行。

依赖数据库连接池的任务,因为线程提交 SQL 后需要等待数据库返回结果,如果等待的时间越长 CPU 空闲时间就越长,那么线程数应该设置越大,这样才能更好的利用 CPU。

建议使用有界队列,有界队列能增加系统的稳定性和预警能力,可以根据需要设大一点,比如几千。有一次我们组使用的后台任务线程池的队列和线程池全满了,不断的抛出抛弃任务的异常,通过排查发现是数据库出现了问题,导致执行 SQL 变得非常缓慢,因为后台任务线程池里的任务全是需要向数据库查询和插入数据的,所以导致线程池里的工作线程全部阻塞住,任务积压在线程池里。如果当时我们设置成无界队列,线程池的队列就会越来越多,有可能会撑满内存,导致整个系统不可用,而不只是后台任务出现问题。当然我们的系统所有的任务是用的单独的服务器部署的,而我们使用不同规模的线程池跑不同类型的任务,但是出现这样问题时也会影响到其他任务。

5. 线程池的监控

通过线程池提供的参数进行监控。线程池里有一些属性在监控线程池的时候可以使用

  • taskCount:线程池需要执行的任务数量。
  • completedTaskCount:线程池在运行过程中已完成的任务数量。小于或等于 taskCount。
  • largestPoolSize:线程池曾经创建过的最大线程数量。通过这个数据可以知道线程池是否满过。如等于线程池的最大大小,则表示线程池曾经满了。
  • getPoolSize: 线程池的线程数量。如果线程池不销毁的话,池里的线程不会自动销毁,所以这个大小只增不 + getActiveCount:获取活动的线程数。

通过扩展线程池进行监控。通过继承线程池并重写线程池的 beforeExecute,afterExecute 和 terminated 方法,我们可以在任务执行前,执行后和线程池关闭前干一些事情。如监控任务的平均执行时间,最大执行时间和最小执行时间等。这几个方法在线程池里是空方法。如:

复制代码
protected void beforeExecute(Thread t, Runnable r) { }

6. 参考资料

  • Java 并发编程实战。
  • JDK1.6 源码

作者介绍

方腾飞,花名清英,淘宝资深开发工程师,关注并发编程,目前在广告技术部从事无线广告联盟的开发和设计工作。个人博客: http://ifeve.com 微博: http://weibo.com/kirals 欢迎通过我的微博进行技术交流。


感谢张龙对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ )或者腾讯微博( @InfoQ )关注我们,并与我们的编辑和其他读者朋友交流。

2012-11-15 07:56104624

评论

发布
暂无评论
发现更多内容

Kafka之为什么需要消息队列

编程江湖

大数据 kafka

主机入侵检测策略之基线检测

网络安全学海

网络安全 信息安全 渗透测试 安全漏洞 暴力猜解

谈谈对微软Dapr的理解

行云创新

微软 服务网格 dapr

【等保小知识】信息安全等级保护四级系统有哪些?

行云管家

网络安全 等级保护

常见杀毒软件及其引擎的特点

喀拉峻

网络安全 病毒扫描

Python代码阅读(第68篇):指定值出现次数

Felix

Python 编程 列表 阅读代码 Python初学者

中科柏诚持续推进数字网络技术,蓄力元宇宙布局

联营汇聚

npm进阶(一) 更换成淘宝镜像源以及 cnpm

No Silver Bullet

npm 12月日更

SpringBoot中如何优雅的使用多线程

编程江湖

JAVA开发 springboot

【IT运维】公司内网服务器可以远程桌面连接吗?怎么连接?

行云管家

云计算 运维 IT运维 远程运维

老电影和图片变清晰的秘密!分辨率提升400%的AI算法

百度大脑

人工智能

Aeron 是如何实现的?—— Ipc Subscription

BUG侦探

共享内存 Aeron Ipc Subscription

元宇宙浪潮之下,数字身份至关重要

CECBC

大厂高频面试题Spring Bean生命周期最详解

Tom弹架构

Java spring 源码

跨越可观测性鸿沟|高手们都在用的“火焰图”是什么

尔达Erda

程序员 微服务 云原生 可观测性 链路追踪

Kyligence + 亚马逊云科技丨实现云上的精细化运营和数字化指挥

Kyligence

Rust 元宇宙 14 —— 创建角色和同步

Miracle

rust 元宇宙

网易云信发布两大元宇宙解决方案,打响进军元宇宙第一枪

网易云信

人工智能 音视频 元宇宙

恒源云(GPUSHARE)_【功能更新】实例日志上线,操作一目了然

恒源云

深度学习 算力加速

JavaScript 中的 .forEach() 和 for...of

devpoint

JavaScript foreach for...of 12月日更

7.《重学JAVA》--运算符

杨鹏Geek

Java 25 周年 28天写作 12月日更

es单机安装及配置其系统服务

elasticsearch

南瓜电影 7 天内全面 Serverless 化实践

Serverless Devs

阿里云 ECS 南瓜电影 SAE

尚硅谷Maxwell视频教程发布!

@零度

大数据 Maxwell

如何搭建批流一体大数据分析架构?

Kyligence

List 去重的 6 种方法

编程江湖

List java 编程

十年期货股票行情数据轻松处理——TDengine在同心源基金的应用

TDengine

数据库 tdengine 时序数据库

飞桨双十二礼包,上海“拆箱”啦!

百度大脑

人工智能

netty系列之:性能为王!创建多路复用http2服务器

程序那些事

Netty 程序那些事 http2 12月日更

腾讯音乐iOS开发四次面试记录

iOSer

ios 腾讯 面试题 iOS面试 腾讯音乐

Go语言学习查缺补漏ing Day5

恒生LIGHT云社区

golang 编程语言

聊聊并发(三)——JAVA线程池的分析和使用_Java_方腾飞_InfoQ精选文章