AICon上海|与字节、阿里、腾讯等企业共同探索Agent 时代的落地应用 了解详情
写点什么

创业公司难以采用 AI 的三个关键因素

  • 2021-06-28
  • 本文字数:1461 字

    阅读完需:约 5 分钟

创业公司难以采用AI的三个关键因素

本文最初发表于 Forbes 网站,经原作者 Gaurav Aggarwal 授权,InfoQ 中文站翻译并分享。


近十年来,出现了一些令人惊叹的技术。随着 2000 年代后期 iOS 和 Android 应用程序商店的推出,移动应用生态系统已经成熟。任何一个有好点子的人,都能开发出一个应用并进行发布。比如像 Uber、Snapchat、Instagram 这样的科技巨头都是这样诞生的。同时,我们也看到,云计算逐渐成为大家获取计算资源的主流,而人们也不需要再购买昂贵的服务器。


这十年,人工智能也成为人们关注的焦点。如果说,移动应用和云计算是对弱势者的颠覆性技术(它们提供了平等的竞争环境),那么人工智能就是对大公司更有利的技术,与大公司相比,创业公司可能不太适合采用这项技术。原因主要有以下三点。

1.数据挑战


人工智能是由数据驱动的,这意味着你拥有的数据越多,结果就越好。如果人工智能不能获得正确数量的数据,它的结果将会差强人意。


一般情况下,初创企业收集的数据量远不及大公司已经拥有的数据量,因为初创企业没有足够的客户基础和流量来产生大量的数据。比如,Facebook 就曾用来自 Instagram 公共账户中的 10 亿张图片来训练一个计算机视觉模型,而一般的初创企业则很难做到这一点。


虽然有一部分初创公司依靠诸如 ImageNet 这样的公共数据集来进行人工智能训练,但即便是经过世界顶尖大学教授们长达 9 年的数据收集工作,ImageNet 的图片数量仍仅为 1400 万张。


此外,初创公司还面临来自数据质量的挑战。人工智能所需的数据要被准备分类、标注,并且数据得是正确的。大公司有足够的资源和客户来收集大量的数据,然后再进行标注,从而保证数据的质量。

2.缺乏人工智能人才


虽然人工智能是最常被滥用的技术流行词,但它仍是一个日益增长的领域,并且人才短缺。


一位人工智能专家需要精通统计学和线性代数,理解如何建立模型,以及如何定义问题、问题的参数和结构。目前来看,拥有人工智能经验的人才是很有限的。并且对于初创公司来说,情况则更是雪上加霜,因为初创公司很难支付起巨额薪水。


而对大公司来说,则可以凭借雄厚的财力以及良好的发展前景雇佣到成熟的人工智能研究人员。目前,一些大型技术公司甚至在挖人工智能领域的教授,这也使得人工智能领域的研究生人才数量进一步下降。对人工智能专家来说,也更愿意与拥有资源的大公司合作。

3.计算成本


人工智能带来的成本问题是初创公司的另一个担忧。像深度学习这样的人工智能训练模型需要大量的时间和计算来训练。要建立一个“足够好”的模型,至少需要几个迭代的训练,以便对超参数进行调整和优化。因为模型需要多次训练,计算能力和开发时间都会付出很大代价。


仅仅对一个已有的模型 (比如 BERT)进行再训练,就会花费掉一个工程师的月薪。除计算成本外,初创公司还必须处理 MLOps 的基础设施。对大型企业而言,这没有什么挑战,因为它们拥有大量资金、专业的 IT 人员和管理计算和人工智能相关培训成本的资源。


与大公司相比,初创公司采用人工智能可能会面临以上三个方面的挑战。因为资源有限,客户群不大,所以对于初创公司来说,部署人工智能模型,并在此基础上作出业务决定是一件非常麻烦的事。人工智能是未来,但它需要用资源、专门的技术和时间来研究以及部署最新的人工智能模型。初创公司想采用人工智能技术的话,还需仔细考量。


作者介绍:

Gaurav Aggarwal,Sleek 和 Forbes U30 的联合创始人,工程师出身的企业家,帮助小企业通过人工智能生存和发展。


原文链接:

https://www.forbes.com/sites/forbestechcouncil/2021/04/23/three-key-factors-making-ai-adoption-hard-for-startups/?sh=4aefd1c3796e

2021-06-28 14:321540

评论

发布
暂无评论
发现更多内容

玖章算术CEO叶正盛在数据技术嘉年华分享NineData AIGC的应用实践

NineData

数据库 数据管理 AIGC 玖章算术 NineData

MyBatis整合Springboot多数据源实现

Java你猿哥

spring Spring Boot mybatis ssm 数据源

面试官:说说MySQL主从复制原理

Java永远的神

MySQL 数据库 程序员 面试 主从复制

GPTCache:LLM 应用必备的【省省省】利器

Zilliz

Milvus Zilliz ChatGPT LLM 语义检索

devops工具链基建建设评价标准

laofo

DevOps cicd 研发效能 持续交付 工程效率

GitHub程序调优「黑马」!阿里大牛的Java性能优化实战笔记已上线

做梦都在改BUG

Java 面试 性能优化 性能调优

解决事务隔离产生问题的MVCC

做梦都在改BUG

园林绿化设计工具:GardenPlanner Mac版

真大的脸盆

Mac Mac 软件 Mac 系统 园林设计工具 绿化设计

一文读懂 Nautilus Chain 上首个 DEX PoseiSwap 的通证经济

西柚子

Flink CDC 在京东的探索与实践

Apache Flink

大数据 flink 实时计算

一文弄懂访问者模式

小小怪下士

Java 程序员 设计模式

上线半天下载量破100W!美团大佬的Java性能调优实战手册,超详细

Java你猿哥

Java 数据库 JVM java编程 Java性能优化

小程序SDK集成到App有哪些好处?

没有用户名丶

物流路由线路配载前端算法逻辑实现方案

京东科技开发者

前端 京东云 京东物流 企业号 4 月 PK 榜

自阿里P8爆出内部1031道java面试题后,在Boss直聘狂拿千份Offer

做梦都在改BUG

Java java面试 Java八股文 Java面试题 Java面试八股文

有限资源下如何实现最高效的数据处理?四个“智慧城市”项目寻找“最优解”

TDengine

tdengine 物联网 时序数据库 智慧城市 数据优化

带你揭开神秘的Javascript AST面纱之Babel AST 四件套的使用方法

京东科技开发者

JavaScript AST 京东云 企业号 4 月 PK 榜

解决事务隔离产生问题的MVCC

Java你猿哥

Java ssm 架构师 MVCC

对标大厂的技术派方案设计,带你了解一个项目从0到1实现的全过程

Java你猿哥

Java 架构 ssm 项目设计

得帆云DeFusion融合集成iPaaS平台领先行业,打造先锋集成产品

得帆信息

打破信息孤岛 数据集成 集成平台 数据集成平台 ipaas

从内核源码看 slab 内存池的创建初始化流程

bin的技术小屋

操作系统 内存管理 Linux Kenel 内核 动态内存池

软件测试/测试开发丨ChatGPT训练营来,手把手带你玩转ChatGPT

测试人

软件测试 自动化测试 测试开发 ChatGPT

MyBatis整合Springboot多数据源实现

做梦都在改BUG

Java Spring Boot mybatis

春风送暖,好久不见

BinTools图尔兹

版本发布

对标大厂的技术派方案设计,带你了解一个项目从0到1实现的全过程

Java全栈架构师

数据库 微服务 程序人生 后端 架构师

iOS16新特性 | 灵动岛适配开发与到家业务场景结合的探索实践

京东科技开发者

ios 京东云 灵动岛 企业号 4 月 PK 榜

历史性的时刻!OpenTiny 跨端、跨框架组件库正式升级 TypeScript,10 万行代码重获新生!

华为云开源

typescript Vue 组件库

Seal AppManager发布:基于平台工程理念的全新应用部署管理体验

SEAL安全

应用部署 企业号 4 月 PK 榜 Seal软件 SealAppManager

Spring全家桶思维笔记导图(Spring Boot+Cloud+IOC+AOP+MVC等)

Java你猿哥

spring Spring Cloud Spring Boot aop ioc

前端代码安全与混淆

京东科技开发者

安全 京东云 企业号 4 月 PK 榜

创业公司难以采用AI的三个关键因素_AI&大模型_Gaurav Aggarwal_InfoQ精选文章