写点什么

基于三维卷积神经网络的全参考视频质量评估算法(二)

  • 2020-01-17
  • 本文字数:2130 字

    阅读完需:约 7 分钟

基于三维卷积神经网络的全参考视频质量评估算法(二)

传统 VQA 算法不能有效的使用视频的运动信息

客观视频质量评估算法只需要计算视频的质量分数。从工业界的角度来看,经典的客观算法有 PSNR,SSIM [4],MS-SSIM [5],这些算法基于经典的信号保真度来判断失真视频与无损视频源的差异,再根据差异大小拟合出视频感知质量。近期的算法有 VQM [6],从多个维度提取时空联合特征去逼近主观质量。目前的主流算法有 VMAF [7],使用机器学习方法对多个图像质量客观算法进行融合。借助于融合的思想,VMAF 能够灵活的加入新的客观算法。另一方面,通过使用新的数据集来重新训练,VMAF 也可以方便的迁移到细分维度的视频质量评估任务。


图像质量评估主要是衡量画面内失真在画面掩盖效应影响下的可感知程度。而视频质量评估不仅仅取决于画面内的失真,也包含时域内的失真和时域掩盖效应。这里掩盖效应可简单理解为背景的复杂程度。如果背景较复杂,我们称之为较强的掩盖效应,反之亦然。举个例子,图一中滑板处于快速运动的状态,掩盖效应较强,所以滑板区域的失真更难察觉。而背景中蓝天部门是大片的光滑区域,掩盖效应较弱,细微的压缩失真也能容易察觉到。因此,在开发一个客观视频质量评估算法中,我们必须把视频固有的运动信息考虑进来。


在学术界,有很多相应的策略被提出。最常用的做法是提取两种特征,一种特征去描述画面质量,另一种特征去描述视频运动的大小。比较主流的运动特征包含:TI (Temporal Information),运动向量(Motion Vector),光流(Optical Flow) 等。这种做法最大的缺陷是完全剥离了画面信息和运动信息,视频不再被当作三维数据来处理,而是二维数据加一维数据来处理。



图 2 三维空间内视频切片示意图


为了解决上述问题,另外一种比较直观的方法是对视频进行三维切片[8]。如图 2 所示,我们使用(x, y, t)来标记空域和时域轴。这里切片如果与时间轴垂直,即(x, y)方向,那么切出来的就是传统意义上的视频帧;如果与时间轴平行,即(x, t) 或(y, t)方向,我们就得到了时空联合的二维切片。在某种程度上,后两个切片包含了运动信息。对以上三种切片使用图像质量评估算法,再把切片分数融合起来,就能取得不错的质量提升。尽管如此,三维切片还是没有最大程度的使用运动信息。


有不少图片质量评估算法是基于经典的 DCT 或小波变换,再从变换系数中提取特征向量。对视频而言,一种比较直观的拓展就是使用三维变换,如三维 DCT 变换,三维小波变换等。经过三维变换后,我们从变换系数中进一步提取特征来而做质量评估。这种方法保留了视频的时空联合信息,但是三维变换会引入复杂度过高的问题。

使用三维卷积神经网络来学习视频的时空联合特征(C3D, Convolutional 3D Neural Network)

近年来深度学习在多个计算机视觉图片任务中取得了瞩目的成就。同时也有学者把二维神经网络扩展到三维神经网络来更好的处理视频任务[9]。我们尝试使用三维卷积神经网络来学习时空特征并把它用到视频质量任务中。我们先给出基本的二维和三维卷积模块,再进一步介绍所提出的网络结构。


1、图 3a 给出了二维卷积核在二维输入上的卷积操作。为了避免歧义,我们假设是对二维图像进行卷积操作。其中输入图像大小为 HxW,卷积核大小为 kxk,图像时域深度和卷积核时域深度均为 1。经过卷积运算输出仍为二维。输入输出均不包含任何运动信息。


2、图 3b 给出了二维卷积核在三维输入上的卷积操作。我们可以假设输入为一个画面大小为 HxW,包含 L 帧的视频。这里卷积核的深度不再是 1,而是跟视频帧数相同。经过卷积操作,输出仍为二维,且与图 3a 的输出大小相同。这种卷积操作有利用到视频前后帧的运动信息,但是只用一步卷积就把所有运动信息给吃掉了。


3、图 3c 给出了三维卷积核在三维输入上的卷积操作。与图 3b 相比,这里卷积核的深度为 d,且 d 小于 L。经过三维卷积操作,输出仍为三维。当 d=1 时,等价为图 3a 的卷积操作对视频帧进行逐帧处理,但是并没有利用到前后帧的运动信息。当 d=L 时,它的效果等同于图 3b。所以当 d 小于 L 时,三维卷积能更可控的利用运动信息。如果我们想让运动信息消失的快一些,就调大三维卷积的深度 d。相反,使用小一些的 d 能更缓慢的提取运动信息。



图 3 二维与三维卷积操作示意图


在此基础上,我们设计了自己的视频质量评估算法 C3DVQA。其核心思想是使用三维卷积来学习时空联合特征,进而更好的去刻画视频质量。


图 4 给出了我们所提出的网络结构图,其输入为损伤视频和残差视频。网络包含两层二维卷积来逐帧提取空域特征。经级联后,空域特征仍保留前后帧的时许关系。网络接着使用四层三维卷积层来学习时空联合特征。在这里,三维卷积输出描述了视频的时空掩盖效应,而且我们使用它来模拟人眼对视频残差的感知情况:掩盖效应弱的地方,残差更容易被感知;掩盖效应强的地方,复杂的背景更能掩盖画面失真。


网络最后是池化层和全连接层。池化层的输入为残差帧经掩盖效应处理后的结果,它代表了人眼可感知残差。全连接层学习整体感知质量和目标质量分数区间的非线性回归关系。



图 4 本文所提出的网络结构图。包含两层二维卷积,四层三维卷积,池化和全连接层。卷积参数表示:(channel,kernel size,stride,padding)


本文转载自 腾讯多媒体实验室公众号。


原文链接:https://mp.weixin.qq.com/s/Kk7J8dLMhHbhksxMumHuwA


2020-01-17 18:06798

评论

发布
暂无评论
发现更多内容

接口优化的常见方案实战总结

京东科技开发者

批处理 预处理 企业号 3 月 PK 榜 接口优化 异步处理

TIDB云数据库试用体验

TiDB 社区干货传送门

安装 & 部署 扩/缩容 6.x 实践

NFTScan x TiDB丨一栈式 HTAP 数据库为 Web3 数据服务提供毫秒级多维查询

TiDB 社区干货传送门

云数据库 TiDB 体验

TiDB 社区干货传送门

社区活动 6.x 实践

爱奇艺统一实时计算平台建设

Apache Flink

大数据 flink 实时计算

2023年2月中国网约车领域月度观察

易观分析

网约车 出行服务

【图解】白嫖阿里云价值3.3万的TiDB

TiDB 社区干货传送门

实践案例 管理与运维 扩/缩容 6.x 实践

等保二级必须要上的设备有哪些?需要堡垒机吗?

行云管家

等保 堡垒机 等保二级

解决80%的工作场景?GitHub爆赞的Java高并发与集合框架,太赞了

做梦都在改BUG

Java 高并发 JUC JCF

TiDB Operator备份TiDB集群到NFS持久卷

TiDB 社区干货传送门

集群管理 管理与运维 故障排查/诊断 安装 & 部署 备份 & 恢复

一次不兼容ddl导致的cdc问题

TiDB 社区干货传送门

故障排查/诊断

图数据库认证考试 NGCP 错题解析 vol.02:这 10 道题竟无一人全部答对

NebulaGraph

图数据库

头一次见!阿里牛人上传的600页JVM垃圾优化笔记飙升GitHub榜首

做梦都在改BUG

Java 性能优化 JVM 垃圾回收

面试官:在高并发情况,你是如何解决单用户超领优惠券问题的?

做梦都在改BUG

Java redis 高并发

新兴应用场景层出不穷,电源管理芯片市场前景广阔

华秋电子

平安银行与易观千帆签约合作,加速数字用户资产增长

易观分析

金融 银行

TiDB Operator恢复持久卷上的备份文件

TiDB 社区干货传送门

集群管理 管理与运维 故障排查/诊断 安装 & 部署 备份 & 恢复

BSN-DDC基础网络详解(四):资金账户充值

BSN研习社

干货分享!PCBA元器件间距的可焊性设计

华秋电子

云数据库TiDB试用初体验

TiDB 社区干货传送门

6.x 实践

天下武功唯快不破:TiDB 在线 DDL 性能提升 10 倍

TiDB 社区干货传送门

备战一年半,我们让最火的开源网关上了云

API7.ai 技术团队

api 网关 APISIX SaaS 平台

全局视角看技术-Java多线程演进史

京东科技开发者

jdk 多线程 Thread 企业号 3 月 PK 榜

面试官:JVM是如何分配和回收堆外内存的?

做梦都在改BUG

Java JVM 垃圾回收

Tapdata Cloud 基础课:新功能详解之「微信告警」,更及时的告警通知渠道

tapdata

数据库·

喜讯!华秋电子荣获第六届“高新杯”十大优秀企业奖

华秋电子

云数据库 TiDB 试用体验总结

TiDB 社区干货传送门

版本测评

火山引擎DataTester:A/B实验如何实现人群智能化定向?

字节跳动数据平台

大数据 AB testing实战

王者荣耀商城异地多活架构设计

Geek_7d539e

堡垒机有硬件吗?推荐使用硬件堡垒机吗?

行云管家

云计算 网络安全 云服务 堡垒机

数据库日常实操优质文章分享(含Oracle、MySQL等) | 2023年2月刊

墨天轮

MySQL 数据库 oracle postgresql 性能优化

基于三维卷积神经网络的全参考视频质量评估算法(二)_文化 & 方法_腾讯多媒体实验室_InfoQ精选文章