写点什么

DeepCTR:易用可扩展的深度学习点击率预测算法库

  • 2019-05-08
  • 本文字数:2124 字

    阅读完需:约 7 分钟

DeepCTR:易用可扩展的深度学习点击率预测算法库

这个项目主要是对目前的一些基于深度学习的点击率预测算法进行了实现,如 PNN , WDL , DeepFM , MLR , DeepCross , AFM , NFM , DIN , DIEN , xDeepFM , NFFM , AutoInt 等,并且对外提供了一致的调用接口。关于每种算法的介绍这里就不细说了,大家可以看论文,看知乎,看博客,讲的都很清楚。


这里简单从整体上介绍一下 DeepCTR 这个库。首先这个不是一个框架,它不具有学术创新意义,目前也没有解决什么复杂的工程问题。它面向的对象是那些对深度学习以及 CTR 预测算法感兴趣的同学,可以利用这个库:


  1. 从一个统一视角来看待各个模型

  2. 快速地进行简单的对比实验

  3. 利用已有的组件快速构建新的模型

统一视角

DeepCTR 通过对现有的基于深度学习的点击率预测模型的结构进行抽象总结,在设计过程中采用模块化的思路,各个模块自身具有高复用性,各个模块之间互相独立。基于深度学习的点击率预测模型按模型内部组件的功能可以划分成以下 4 个模块:输入模块,嵌入模块,特征提取模块,预测输出模块。


快速实验


Criteo 数据集预览


下面是一个简单的用 DeepFM 模型在 criteo 数据集上训练的的例子。


import pandas as pdfrom sklearn.preprocessing import LabelEncoder, MinMaxScalerfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import log_loss, roc_auc_scorefrom deepctr.models import DeepFMfrom deepctr.utils import SingleFeatif __name__ == "__main__":
data = pd.read_csv('./criteo_sample.txt')
sparse_features = ['C' + str(i) for i in range(1, 27)] dense_features = ['I'+str(i) for i in range(1, 14)]
data[sparse_features] = data[sparse_features].fillna('-1', ) data[dense_features] = data[dense_features].fillna(0,) target = ['label'] # 1.Label Encoding for sparse features,and do simple Transformation for dense features for feat in sparse_features: lbe = LabelEncoder() data[feat] = lbe.fit_transform(data[feat]) mms = MinMaxScaler(feature_range=(0, 1)) data[dense_features] = mms.fit_transform(data[dense_features]) # 2.count #unique features for each sparse field,and record dense feature field name sparse_feature_list = [SingleFeat(feat, data[feat].nunique()) for feat in sparse_features] dense_feature_list = [SingleFeat(feat, 0) for feat in dense_features] # 3.generate input data for model train, test = train_test_split(data, test_size=0.2) train_model_input = [train[feat.name].values for feat in sparse_feature_list] + \ [train[feat.name].values for feat in dense_feature_list] test_model_input = [test[feat.name].values for feat in sparse_feature_list] + \ [test[feat.name].values for feat in dense_feature_list] # 4.Define Model,train,predict and evaluate model = DeepFM({"sparse": sparse_feature_list, "dense": dense_feature_list}, final_activation='sigmoid') model.compile("adam", "binary_crossentropy", metrics=['binary_crossentropy'], ) history = model.fit(train_model_input, train[target].values, batch_size=256, epochs=10, verbose=2, validation_split=0.2, ) pred_ans = model.predict(test_model_input, batch_size=256)
print("test LogLoss", round(log_loss(test[target].values, pred_ans), 4)) print("test AUC", round(roc_auc_score(test[target].values, pred_ans), 4)))
复制代码

快速构建新模型

所有的模型都是严格按照 4 个模块进行搭建的,输入和嵌入以及输出基本都是公用的,每个模型的差异之处主要在特征提取部分。


下面是 DeepFM 模型的特征提取核心代码,大家也可以利用这些已有的组件去构建自己想要的模型。


fm_input = Concatenate(axis=1)(embed_list)#将输入拼接成FM层需要的shapedeep_input = Flatten()(fm_input)#将输入拼接成Deep网络需要的shapefm_out = FM()(fm_input)#调用FM组件deep_out = MLP(hidden_size, activation, l2_reg_deep, keep_prob,use_bn, seed)(deep_input)#调用Deep网络组件deep_logit = Dense(1, use_bias=False, activation=None)(deep_out)
复制代码

如何使用呢!?

首先确保你的 python 版本 >=3.4 然后:


pip install deepctr
复制代码


就可以安装成功啦!剩下的我建议你先来项目仓库点个赞,然后再去看说明文档!


DeepCTR 项目地址:


https://github.com/shenweichen/DeepCTR


Welcome to DeepCTR’s documentation!


地址:


https://deepctr-doc.readthedocs.io/en/latest/


最后就是欢迎感兴趣的同学一起来维护建设和交流,无论是文档,还是开发,还是测试,都欢迎~

作者介绍:

沈伟臣,阿里巴巴算法工程师,硕士毕业于浙江大学计算机学院。对机器学习,强化学习技术及其在推荐系统领域内的应用具有浓厚兴趣。


本文来自 沈伟臣 在 DataFun 社区的演讲,由 DataFun 编辑整理。


2019-05-08 08:006798

评论

发布
暂无评论
发现更多内容

文盘Rust -- 给程序加个日志 | 京东云技术团队

京东科技开发者

京东云 企业号9月PK榜

这一次,大模型颠覆广告行业!

Openlab_cosmoplat

人工智能 大模型

当红语言模型利器:深度解析向量数据库技术及其应用

Baihai IDP

人工智能 AI 向量数据库 白海科技 大语言模型

对线面试官 - 绝无仅有真实线上问题排查面试题突击篇

派大星

Java 面试题

“价值交付课程”11月4-5日 · CSPO认证周末班【提前报名特惠】CST导师亲授

ShineScrum

玖章算术叶正盛将揭示为什么PostgreSQL不如MySQL流行?|3306π

NineData

数据库 postgresql 开源 叶正盛 NineData

室内LED全彩显示屏P3和P5有什么区别

Dylan

LED 全彩LED显示屏 led显示屏厂家 户内led显示屏

【Y 码力】WAL 与性能

YMatrix 超融合数据库

性能提升 WAL 超融合数据库 故障恢复 YMatrix

区块链项目:白皮书+PPT海报设计,热度视频/MG动画,出海包装/宣发,经济模型设计

区块链软件开发推广运营

数字藏品开发 dapp开发 区块链开发 链游开发 NFT开发

9月23-24日·上海线下·CSM认证周末班【提前报名特惠】“全球金牌课程”CST导师亲授

ShineScrum

冰火两重天——GTLC有感

IT民工大叔

个人成长 GTLC 技术领导力

DPText-DETR: 基于动态点query的场景文本检测,更高更快更鲁棒 | 京东探索研究院

京东科技开发者

京东云 企业号9月PK榜

持续部署:提高敏捷加速软件交付(内含教程)

SEAL安全

ci 持续部署 CD 软件交付 企业号9月PK榜

采用Excel作为可视化设计器的开源规则引擎 NopRule

canonical

低代码 规则引擎 可视化开发 可逆计算 Nop平台

当今怎么还沿用水晶头呢?

小齐写代码

谷沁清益生菌清口含片,守护口腔健康的第一道防线

联营汇聚

基于 Flink CDC 高效构建入湖通道

Apache Flink

大数据 flink 实时计算

极光笔记 | 推送服务数据中心选择:合规性与传输效率的双重考量

极光GPTBots-极光推送

数据库深分页介绍及优化方案 | 京东云技术团队

京东科技开发者

京东云 企业号9月PK榜

数据通信网络之OSPFv3基础

timerring

数据通信网络

ARTS week4

Z.

ARTS 打卡计划 #ARTS 左耳朵耗子

火山引擎DataLeap的数据血缘用例与设计概述

字节跳动数据平台

大数据 企业号9月PK榜

领域驱动设计(DDD):DDD落地问题和一些解决方法

付威

Spring 条件注解没生效?咋回事

江南一点雨

Java spring

探索GreatADM:如何快速定义监控

GreatSQL

DevSecOps 中的漏洞管理(下)

禅道项目管理

DevOps 漏洞

离散性行业介绍及与MES系统的好处

万界星空科技

MES系统 产品资讯

解锁社交媒体的未来:SocialFi 的承诺

区块链软件开发推广运营

交易所开发 数字藏品开发 合约交易所开发 NFT开发 区块链开发DAPP开发

3天上手Ascend C编程丨通过Ascend C编程范式实现一个算子实例

华为云开发者联盟

人工智能 开发 华为云 华为云开发者联盟 企业号9月PK榜

DeepCTR:易用可扩展的深度学习点击率预测算法库_数据库_DataFunTalk_InfoQ精选文章