写点什么

深度增强学习方向论文整理

  • 2019-11-29
  • 本文字数:5536 字

    阅读完需:约 18 分钟

深度增强学习方向论文整理

一. 开山鼻祖 DQN

  1. Playing Atari with Deep Reinforcement Learning,V. Mnih et al., NIPS Workshop, 2013.

  2. Human-level control through deep reinforcement learning, V. Mnih et al., Nature, 2015.

二. DQN 的各种改进版本(侧重于算法上的改进)

  1. Dueling Network Architectures for Deep Reinforcement Learning. Z. Wang et al., arXiv, 2015.

  2. Prioritized Experience Replay, T. Schaul et al., ICLR, 2016.

  3. Deep Reinforcement Learning with Double Q-learning, H. van Hasselt et al., arXiv, 2015.

  4. Increasing the Action Gap: New Operators for Reinforcement Learning, M. G. Bellemare et al., AAAI, 2016.

  5. Dynamic Frame skip Deep Q Network, A. S. Lakshminarayanan et al., IJCAI Deep RL Workshop, 2016.

  6. Deep Exploration via Bootstrapped DQN, I. Osband et al., arXiv, 2016.

  7. How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies, V. François-Lavet et al., NIPS Workshop, 2015.

  8. Learning functions across many orders of magnitudes,H Van Hasselt,A Guez,M Hessel,D Silver

  9. Massively Parallel Methods for Deep Reinforcement Learning, A. Nair et al., ICML Workshop, 2015.

  10. State of the Art Control of Atari Games using shallow reinforcement learning

  11. Learning to Play in a Day: Faster Deep Reinforcement Learning by Optimality Tightening(11.13 更新)

  12. Deep Reinforcement Learning with Averaged Target DQN(11.14 更新)

  13. Safe and Efficient Off-Policy Reinforcement Learning(12.20 更新)

  14. The Predictron: End-To-End Learning and Planning (1.3 更新)

三. DQN 的各种改进版本(侧重于模型的改进)

  1. Deep Recurrent Q-Learning for Partially Observable MDPs, M. Hausknecht and P. Stone, arXiv, 2015.

  2. Deep Attention Recurrent Q-Network

  3. Control of Memory, Active Perception, and Action in Minecraft, J. Oh et al., ICML, 2016.

  4. Progressive Neural Networks

  5. Language Understanding for Text-based Games Using Deep Reinforcement Learning

  6. Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks

  7. Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation

  8. Recurrent Reinforcement Learning: A Hybrid Approach

  9. Value Iteration Networks, NIPS, 2016 (12.20 更新)

  10. MazeBase:A sandbox for learning from games(12.20 更新)

  11. Strategic Attentive Writer for Learning Macro-Actions(12.20 更新)

四. 基于策略梯度的深度强化学习

深度策略梯度:


  1. End-to-End Training of Deep Visuomotor Policies

  2. Learning Deep Control Policies for Autonomous Aerial Vehicles with MPC-Guided Policy Search

  3. Trust Region Policy Optimization


深度行动者评论家算法:


  1. Deterministic Policy Gradient Algorithms

  2. Continuous control with deep reinforcement learning

  3. High-Dimensional Continuous Control Using Using Generalized Advantage Estimation

  4. Compatible Value Gradients for Reinforcement Learning of Continuous Deep Policies

  5. Deep Reinforcement Learning in Parameterized Action Space

  6. Memory-based control with recurrent neural networks

  7. Terrain-adaptive locomotion skills using deep reinforcement learning

  8. Compatible Value Gradients for Reinforcement Learning of Continuous Deep Policies

  9. SAMPLE EFFICIENT ACTOR-CRITIC WITH EXPERIENCE REPLAY(11.13 更新)


搜索与监督:


  1. End-to-End Training of Deep Visuomotor Policies

  2. Interactive Control of Diverse Complex Characters with Neural Networks


连续动作空间下探索改进:


  1. Curiosity-driven Exploration in DRL via Bayesian Neuarl Networks


结合策略梯度和 Q 学习:


  1. Q-PROP: SAMPLE-EFFICIENT POLICY GRADIENT WITH AN OFF-POLICY CRITIC(11.13 更新)

  2. PGQ: COMBINING POLICY GRADIENT AND Q-LEARNING(11.13 更新)


其它策略梯度文章:


  1. Gradient Estimation Using Stochastic Computation Graphs

  2. Continuous Deep Q-Learning with Model-based Acceleration

  3. Benchmarking Deep Reinforcement Learning for Continuous Control

  4. Learning Continuous Control Policies by Stochastic Value Gradients

  5. Generalizing Skills with Semi-Supervised Reinforcement Learning(12.20 更新)

五. 分层 DRL

  1. Deep Successor Reinforcement Learning

  2. Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation

  3. Hierarchical Reinforcement Learning using Spatio-Temporal Abstractions and Deep Neural Networks

  4. Stochastic Neural Networks for Hierarchical Reinforcement Learning – Authors: Carlos Florensa, Yan Duan, Pieter Abbeel (11.14 更新)

六. DRL 中的多任务和迁移学习

  1. ADAAPT: A Deep Architecture for Adaptive Policy Transfer from Multiple Sources

  2. A Deep Hierarchical Approach to Lifelong Learning in Minecraft

  3. Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning

  4. Policy Distillation

  5. Progressive Neural Networks

  6. Universal Value Function Approximators

  7. Multi-task learning with deep model based reinforcement learning(11.14 更新)

  8. Modular Multitask Reinforcement Learning with Policy Sketches (11.14 更新)

七. 基于外部记忆模块的 DRL 模型

  1. Control of Memory, Active Perception, and Action in Minecraft

  2. Model-Free Episodic Control

八. DRL 中探索与利用问题

  1. Action-Conditional Video Prediction using Deep Networks in Atari Games

  2. Curiosity-driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks

  3. Deep Exploration via Bootstrapped DQN

  4. Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation

  5. Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models

  6. Unifying Count-Based Exploration and Intrinsic Motivation

  7. #Exploration: A Study of Count-Based Exploration for Deep Reinforcemen Learning(11.14 更新)

  8. Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning(11.14 更新)

  9. VIME: Variational Information Maximizing Exploration(12.20 更新)

九. 多 Agent 的 DRL

  1. Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks

  2. Multiagent Cooperation and Competition with Deep Reinforcement Learning

十. 逆向 DRL

  1. Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization

  2. Maximum Entropy Deep Inverse Reinforcement Learning

  3. Generalizing Skills with Semi-Supervised Reinforcement Learning(11.14 更新)

十一. 探索+监督学习

  1. Deep learning for real-time Atari game play using offline Monte-Carlo tree search planning

  2. Better Computer Go Player with Neural Network and Long-term Prediction

  3. Mastering the game of Go with deep neural networks and tree search, D. Silver et al., Nature, 2016.

十二. 异步 DRL

  1. Asynchronous Methods for Deep Reinforcement Learning

  2. Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU(11.14 更新)

十三:适用于难度较大的游戏场景

  1. Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni et al., arXiv, 2016.

  2. Strategic Attentive Writer for Learning Macro-Actions

  3. Unifying Count-Based Exploration and Intrinsic Motivation

十四:单个网络玩多个游戏

  1. Policy Distillation

  2. Universal Value Function Approximators

  3. Learning values across many orders of magnitude

十五:德州 poker

  1. Deep Reinforcement Learning from Self-Play in Imperfect-Information Games

  2. Fictitious Self-Play in Extensive-Form Games

  3. Smooth UCT search in computer poker

十六:Doom 游戏

  1. ViZDoom: A Doom-based AI Research Platform for Visual Reinforcement Learning

  2. Training Agent for First-Person Shooter Game with Actor-Critic Curriculum Learning

  3. Playing FPS Games with Deep Reinforcement Learning

  4. LEARNING TO ACT BY PREDICTING THE FUTURE(11.13 更新)

  5. Deep Reinforcement Learning From Raw Pixels in Doom(11.14 更新)

十七:大规模动作空间

  1. Deep Reinforcement Learning in Large Discrete Action Spaces

十八:参数化连续动作空间

  1. Deep Reinforcement Learning in Parameterized Action Space

十九:Deep Model

  1. Learning Visual Predictive Models of Physics for Playing Billiards

  2. J. Schmidhuber, On Learning to Think: Algorithmic Information Theory for Novel Combinations of Reinforcement Learning Controllers and Recurrent Neural World Models, arXiv, 2015. arXiv

  3. Learning Continuous Control Policies by Stochastic Value Gradients


4.Data-Efficient Learning of Feedback Policies from Image Pixels using Deep Dynamical Models


  1. Action-Conditional Video Prediction using Deep Networks in Atari Games

  2. Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models

二十:DRL 应用

机器人领域:


  1. Trust Region Policy Optimization

  2. Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control

  3. Path Integral Guided Policy Search

  4. Memory-based control with recurrent neural networks

  5. Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection

  6. Learning Deep Neural Network Policies with Continuous Memory States

  7. High-Dimensional Continuous Control Using Generalized Advantage Estimation

  8. Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization

  9. End-to-End Training of Deep Visuomotor Policies

  10. DeepMPC: Learning Deep Latent Features for Model Predictive Control

  11. Deep Visual Foresight for Planning Robot Motion

  12. Deep Reinforcement Learning for Robotic Manipulation

  13. Continuous Deep Q-Learning with Model-based Acceleration

  14. Collective Robot Reinforcement Learning with Distributed Asynchronous Guided Policy Search

  15. Asynchronous Methods for Deep Reinforcement Learning

  16. Learning Continuous Control Policies by Stochastic Value Gradients


机器翻译:


  1. Simultaneous Machine Translation using Deep Reinforcement Learning


目标定位:


  1. Active Object Localization with Deep Reinforcement Learning


目标驱动的视觉导航:


  1. Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning


自动调控参数:


  1. Using Deep Q-Learning to Control Optimization Hyperparameters


人机对话:


  1. Deep Reinforcement Learning for Dialogue Generation

  2. SimpleDS: A Simple Deep Reinforcement Learning Dialogue System

  3. Strategic Dialogue Management via Deep Reinforcement Learning

  4. Towards End-to-End Learning for Dialog State Tracking and Management using Deep Reinforcement Learning


视频预测:


  1. Action-Conditional Video Prediction using Deep Networks in Atari Games


文本到语音:


  1. WaveNet: A Generative Model for Raw Audio


文本生成:


  1. Generating Text with Deep Reinforcement Learning


文本游戏:


  1. Language Understanding for Text-based Games Using Deep Reinforcement Learning


无线电操控和信号监控:


  1. Deep Reinforcement Learning Radio Control and Signal Detection with KeRLym, a Gym RL Agent


DRL 来学习做物理实验:


  1. LEARNING TO PERFORM PHYSICS EXPERIMENTS VIA DEEP REINFORCEMENT LEARNING(11.13 更新)


DRL 加速收敛:


  1. Deep Reinforcement Learning for Accelerating the Convergence Rate(11.14 更新)


利用 DRL 来设计神经网络:


  1. Designing Neural Network Architectures using Reinforcement Learning(11.14 更新)

  2. Tuning Recurrent Neural Networks with Reinforcement Learning(11.14 更新)

  3. Neural Architecture Search with Reinforcement Learning(11.14 更新)


控制信号灯:


  1. Using a Deep Reinforcement Learning Agent for Traffic Signal Control(11.14 更新)


自动驾驶:


  1. CARMA: A Deep Reinforcement Learning Approach to Autonomous Driving(12.20 更新)

  2. Deep Reinforcement Learning for Simulated Autonomous Vehicle Control(12.20 更新)

  3. Deep Reinforcement Learning framework for Autonomous Driving(12.20 更新)

二十一:其它方向

避免危险状态:


  1. Combating Deep Reinforcement Learning’s Sisyphean Curse with Intrinsic Fear (11.14 更新)


DRL 中 On-Policy vs. Off-Policy 比较:


  1. On-Policy vs. Off-Policy Updates for Deep Reinforcement Learning(11.14 更新)


注 1:小伙伴们如果觉得论文一个个下载太麻烦,可以私信我,我打包发给你。


注 2:欢迎大家及时补充新的或者我疏漏的文献。


本文转载自 Alex-zhai 知乎账号。


原文链接:https://zhuanlan.zhihu.com/p/23600620


2019-11-29 13:463014

评论

发布
暂无评论
发现更多内容

Java Web(九)会话跟踪技术

浅辄

javaWeb session Cookie 11月月更

泛型由入门到精通(2)

好程序员IT教育

Java 泛型

分布式事务详解、理论分析、及强一致性(2PC、3PC)剖析

C++后台开发

数据库 分布式 后端开发 Linux服务器开发 C++开发

甩掉容量规划炸弹:用 AHPA 实现 Kubernetes 智能弹性伸缩

阿里巴巴云原生

阿里云 Kubernetes 云原生 AHPA

Kotlin变量声明和类型推断

子不语Any

kotlin Andriod 11月月更

谈谈我对服务网格的理解

阿里巴巴云原生

阿里云 云原生 服务网格

九科信息受邀参加中国总会计师协会财务数智化转型研讨会

九科Ninetech

精益创业者的用户体验设计

产品海豚湾

产品经理 产品设计 精益思想 用户体验 11月月更

Thymeleaf入门教程

Studying_swz

前端 thymeleaf 11月月更

【Go电商实战04】为什么GoFrame不支持migrate功能?我还特意去问了框架作者

王中阳Go

golang 高效工作 学习方法 程序员 11月月更

湖仓一体架构下的数据研发及管理

数造万象

基础逻辑门

芯动大师

Verilog 11月月更 Xilinx

从0开始,让你的Spring Boot项目跑在Linux服务器

闫同学

spring Linux 服务器 11月月更

泛型由入门到精通(3)

好程序员IT教育

Java 泛型

mysql的高可用方案以及优缺点

想要飞的猪

构建高质量的持续交付体系

老张

软件工程 持续交付

数据预处理和特征工程-特征选择-Embedded嵌入法

烧灯续昼2002

Python 机器学习 算法 sklearn 11月月更

浅谈MVC、MVP、MVVM框架模式

闫同学

mvc MVP MVVM 11月月更 框架模式

4K60帧!RayLink远程控制软件如何帮助设计师远程办公?

RayLink远程工具

远程控制软件 远程办公软件 远控软件 远程桌面连接 RayLink

秒云加入OpenCloudOS操作系统开源社区,携手打造更智能、更可控、更可信的云原生环境

MIAOYUN

开源社区 opencloudOS

数字化转型有可能让所有人满意吗?

优秀

数字化转型

EMI 滤波电路是由哪些元件组成的,一文看懂!

元器件秋姐

元器件采购 元器件电商 EMI滤波电路 滤波电路 元器件知识

深入浅出学习透析Nginx服务器的基本原理和配置指南「初级实践篇 」

洛神灬殇

nginx 正向代理与反向代理 11月日更 nginx 开源版 开发指南

JVM Sandbox入门教程与原理浅谈

Zhendong

Java JVM

阿里云弹性计算总经理张献涛:智能化、高效能、新交互将重塑互联网

云布道师

弹性计算 云栖大会

【愚公系列】2022年11月 微信小程序-app.json配置属性之Worker

愚公搬代码

11月月更

MySQL事务的隔离级别以及脏读、幻读和不可重复读

闫同学

MySQL 事务 11月月更

从HelloWorld看Java与Kotlin

子不语Any

kotlin Andriod 11月月更

浅析云原生

鲸品堂

AI音乐创作,让每一个人都成为音乐家

HarmonyOS SDK

音频 HMS Core

工信部电子五所李冬:在龙蜥社区的一站式自动化测试平台的探索和实践|2022云栖龙蜥实录

OpenAnolis小助手

开源 操作系统 自动化测试 龙蜥社区 2022云栖大会

深度增强学习方向论文整理_语言 & 开发_Alex-zhai_InfoQ精选文章