在大数据时代,需要处理的数据都是 TB 级或 PB 级以上,机器学习模型的规模也在不断地增大,机器学习模型的参数的规模可以达到百亿甚至是千亿的级别,如此大的参数规模给现有的机器学习平台带来了前所未有的挑战。同时,高维稀疏数据对于模型的构建也带来了巨大的挑战。
人工智能取得了前所未有的发展,机器学习、深度学习中算法数量也在不断的增加。但是也带来了很多的问题:
特征分析和变换中,工作量大、性能差、成本高等;
难以处理超高维稀疏数据,超规模参数调优难度很大;
目前业界实现的机器学习平台都有各种各样的问题,例如和 Hadoop 生态圈衔接较差,无法很好的与其衔接起来。这些问题一直阻碍着开发者的前行,亟需解决。
针对超大规模机器学习的场景,360 开源了内部的超大规模机器学习计算框架 XDML。XDML 是一款基于参数服务器(Parameter Server),采用专门缓存机制的分布式机器学习平台。它在 360 内部海量规模数据上进行了测试和调优,在大规模数据量和超高维特征的机器学习任务上,具有良好的稳定性,扩展性和兼容性。
GitHub 地址:https://github.com/Qihoo360/XLearning-XDML
XDML 架构设计图
XDML 特性
1. 提供特征分析与变换等功能模块
在现有的机器学习模型的构建中,特征生产与业务和数据高度相关,高度定制,工作量很大。特征分析与变换处理粒度过小,在大数据情形下性能较差,且缺乏一站式的特征分析与变换工具。XDML 能够最大程度地挖掘并行度,结合样本并行+特征并行+算子并行/融合/OnePass 化,显著提升特征工程的性能,支持 TB 级数据 10min 级分析,并且遵循 spark 标准接口。在包含数千个特征的稠密 benchmark 上进行特征分析与变换测试,性能较 Spark MLlib 提升 1000 多倍;XDML 也能很好地适应稀疏数据特征分析。
2. 实现常用的大规模数据量场景下的机器学习算法
超高维度的参数优化,对于开发者算法能力要求较高,而且工作量较大,需要大量的时间和精力进行调参工作。XDML 内化学界最新研究成果,引入南京大学李武军老师提出的全新优化算法 SCOPE,并重构了准线性模型,在效果保持稳定的同时,大幅加速收敛进程,显著提升模型与算法的性能。在 Benchmark 上,相比 LBFGS 性能提升 10 倍左右,相较于 SGD 性能提升 50 多倍。同时,XDML 还对接了一些优秀的开源成果和 360 公司自研成果,站在巨人的肩膀上,博采众长。
3. 充分利用现有的成熟技术,保证整个框架的高效稳定
在互联网领域,技术框架更新迭代十分迅速,XDML 可以与业界成熟的技术无缝衔接,整个框架具有高效的稳定性。
4. 完全兼容 hadoop 生态,和现有的大数据工具实现无缝对接,提升处理海量数据的能力
在 XDML 设计之初,就将与 Hadoop 生态无缝衔接作为其设计目标,解决了大规模高维数据的存储。XDML 具有与目前 Hadoop、Spark 等大数据框架无缝对接的能,同时替换 Spark 原生能力的性能/效果瓶颈,提供更好的大数据框架使用体验,将开发者从繁杂的工作中解脱出来,不必为数据、模型的存储大费周章。
5. 在系统架构和算法层面实现深度的工程优化,在不损失精度的前提下,大幅提高性能
在高维稀疏数据场景中,如何处理千亿级参数训练,百亿乃至千亿级别样本训练中模型的存储、数据如何传输、模型的更新等问题一直是业界急需解决的问题。XDML 具有模型的快速存储能力,高效的数据传输,从多个角度提升了高维稀疏数据场景中,提升模型的训练速度提升整体的性能。
结语
“从开源社区来,并回到开源社区去”一直是开源社区的精神。360 此次开源的内部超大规模机器学习计算框架 XDML,能够为开发者节约学习和操作时间,提高模型训练效率,具有良好的稳定性和兼容性,为开源社区提供了一件利器。
评论 1 条评论