写点什么

火掌柜 iOS 端基于 CocoaPods 的组件二进制化实践

  • 2019-02-21
  • 本文字数:26320 字

    阅读完需:约 86 分钟

火掌柜iOS端基于CocoaPods的组件二进制化实践

火掌柜 iOS 客户端经过近两年的组件化推进,组件数量已经颇具规模,达到了近 100 个。随着组件数量和代码量越来越多,主工程的打包时间从最初的十几分钟,增加到了现在的四十分钟左右。依赖组件较多,改动相对频繁的上层业务组件,其发布时间也较为漫长。编译时长的困扰,已经明显影响了日常开发体验,同时也造成 CI pipeline 执行时间过长,在 runner 资源匮乏的情况下,不利于内部 CI 的推广。当前时间节点下,如何减少编译时长,已经成为开发团队较为迫切的需求。

前言

组件化除了让模块复用更加便捷,业务开发更加轻量,还有一个不可忽视的优势———组件二进制化,即可通过将非开发中的组件预先编译打包成静态 / 动态库并存放至某处,待集成此组件时,直接使用二进制包,从而提升集成此组件的 App 或者上层组件的编译速度。


对比源码依赖,二进制依赖的组件只需要进行链接而无需编译,可以极大地提升集成效率。掌柜主工程在大部分组件都二进制化的情况下,打包时长从四十分钟左右,下降到最快十二分钟,整整减少了三倍多, CI pipeline 涉及到编译环节的 lint、打包、发布,其耗时也成数倍减少,二进制化所带来的好处不言而喻。


在实践二进制化过程中,由于没有找到较为成熟的依赖切换工具,我们编写了 cocoapods-bin 通用插件,有需要的开发者可以尝试下。


需要说明的是有些二进制方案是在首次编译后,保留组件生成的二进制包,后续编译直接使用此二进制包。在大多数情况下,比如 App 打包,组件 lint 与发布,这类只进行一次编译的操作,首次编译才是主要关注点。本文所说的二进制化和此类方案的最大区别,就是将组件二进制包制作放到首次编译前,更多的是在组件发布时,同时生成二进制包。


另外,鉴于 CocoaPods 在 1.3.0 后的版本,增加了类似增量编译的功能,在首次 install / update 编译之后,后续再进行 install / update 操作,会根据更改结果进行增量编译,个人感觉针对 “非首次 install / update 后的编译“ 优化,并不是必须的,因为 CocoaPods 已经帮我们做好了。

二进制化需求

以下是根据掌柜团队日常开发情况,提出的二进制化需求点:


  1. 不影响未接入二进制化方案的业务团队

  2. 组件级别的源码 / 二进制依赖切换功能

  3. 无二进制版本时,自动采用源码版本

  4. 接近原生 CocoaPods 的使用体验 (为了满足此需求,我们决定开发自定义的 CocoaPods 插件。)

  5. 不增加过多额外的工作量


下面我会参照这几个需求点,逐步说明掌柜 iOS 团队的二进制化过程。

宏定义处理

预编译阶段处理的宏定义,在组件进行二进制化后会失效,特别是某些依赖 DEBUG 宏的调试工具,在二进制化之后就不可见了。为了方便处理,我把使用宏的地方分为两种:


  • 方法内部

  • 方法外部


针对方法内部,我们创建了 TDFMacro 类来替换宏,将逻辑挪到运行时处理:


// TDFMacro.h@interface TDFMacro : NSObject+ (BOOL)enterprise;+ (BOOL)debug;
+ (void)debugExecute:(void(^)(void))debugExecute elseExecute:(void(^)(void))elseExecute;+ (void)enterpriseExecute:(void(^)(void))enterpriseExecute elseExecute:(void(^)(void))elseExecute;@end
// TDFMacro.m@implementation TDFMacro+ (BOOL)enterprise {#if ENTERPRISE return YES;#else return NO;#endif}
+ (BOOL)debug {#if DEBUG return YES;#else return NO;#endif}
+ (void)debugExecute:(void (^)(void))debugExecute elseExecute:(void (^)(void))elseExecute { if ([self debug]) { !debugExecute ?: debugExecute(); } else { !elseExecute ?: elseExecute(); }}
+ (void)enterpriseExecute:(void (^)(void))enterpriseExecute elseExecute:(void (^)(void))elseExecute { if ([self enterprise]) { !enterpriseExecute ?: enterpriseExecute(); } else { !elseExecute ?: elseExecute(); }}@end
复制代码


这样一来,只需要确保 TDFMacro 组件中的宏有效就可以了————不对其进行二进制化。


针对方法外部,我们尽量将能改写到方法内部的代码改写后按第一种情况处理,不能处理的对代码进行重构以消除宏定义,比如我们网络层的常量,重写前后:


// 前#if DEBUG NSString * kTDFRootAPI = @"xxx";#elseNSString * const kTDFRootAPI = @"xxx";#end// 后NSString * kTDFRootAPI = @"xxx";
复制代码


个人建议尽量不要跨模块使用宏定义,特别是可以用常量或函数代替的宏。比如有组件 A、B ,B 依赖 A,它们包含如下代码:


// A#define TDF_THEME_BACKGROUNDCOLOR [[UIColor whiteColor] colorWithAlphaComponent:0.7]
// B// .m 使用了 TDF_THEME_BACKGROUNDCOLOR
复制代码


假设 A 和 B 都已二进制化,假设后续我们修改了 A :


// A#define TDF_THEME_BACKGROUNDCOLOR [[UIColor whiteColor] colorWithAlphaComponent:0.4]
复制代码


由于 B 中的 TDF_THEME_BACKGROUNDCOLOR 宏已经在二进制化打包预编译时被替换为 [[UIColor whiteColor] colorWithAlphaComponent:0.7] ,所以 B 并不会感知到此次 A 的变更,这时我们就不得不重新打包组件 B 以同步 A 的变更,即使 B 并未做任何更改,当存在较多使用 TDF_THEME_BACKGROUNDCOLOR 宏的组件时,就容易遗漏同步某些组件。

制作二进制包

二进制化第一步,先要把组件的二进制包打出来。这里说下比较通用的打包工具 cocoapods-packagerCarthage ,目前我们使用 cocoapods-packager 将组件构建 static-framework 。


cocoapods-packager 的工作原理和 pod spec/lib lint 差不多,都是通过 podspec 动态生成 Podfile ,然后 install 出目标工程,最后通过 xcodebuild 命令构建出二进制包。这种方式有一个好处,只要保证组件 lint 通过了,就可以打出二进制包,不需要和 Example 工程挂钩,很方便。但是这个插件作者几乎不维护了,很多较久之前的 issue 和 pull request 都是未处理状态。


以下是我们用来构建 static-framework 的命令:


pod package TDFNavigationBarKit.podspec --exclude-deps --force --no-mangle --spec-sources=http://git.xxxxx.net/ios/cocoapods-spec.git
复制代码


在使用过程中,我遇到了两个关于组件资源的问题 :


  • 使用了 --exclude-deps option 后,虽然没有把 dependency 的符号信息打进可执行文件,但是它把 dependency 的 bundle 给拷贝过来了 (见 builder.rb 229 copy_resources 方法)

  • subspec 声明的 resource 不会被拷贝进 framework 中


鉴于 cocoapods-packager 近期没有发布新版本的计划,我只能 fork 并更新代码之后,重新发布 cocoapods-packager-pro 来修复这两个问题。使用 cocoapods-packager-pro 之后,构建 static-framework 的命令变为:


pod package-pro TDFNavigationBarKit.podspec --exclude-deps --force --no-mangle --spec-sources=http://git.xxxxx.net/ios/cocoapods-spec.git
复制代码


二级命令 package 改成 package-pro 即可。


cocoapods-packager 创建二进制包中的 modulemap 时,会先查看目标组件的 podspec 是否设置了 module_map 字段,如有直接拷贝,否则会查看是否有和组件同名的头文件,如有则创建 modulemap ,并设置 umbrella header 为此文件,如无则不创建 modulemap 。所以 cocoapods-packager 给没有和组件同名的头文件,又没有指定 module_map 的组件打二进制包时,是不会创建 modulemap 的,比如 SDWebImage ,这时候需要我们自行添加 modulemap,否则使用 swift 的 import 就会找不到对应的 module,这点需要注意下。


CocoaPods 目前发布了 1.6.0 beta 版本,试用之后,发现由于某些类的构造函数参数发生了变更, 导致 cocoapods-packager 现有代码已经无法正常工作了,所以 cocoapods-packager 只适用低于 1.6.0 版本的 CocoaPods,后期如果官方 cocoapods-packager 还是没有更新的话,我们应该会在 cocoapods-packager-pro 中适配新版本 CocoaPods。


cocoapods-packager 作者最近还创建了插件 cocoapods-generate ,此插件可以直接根据 podspec 生成目标工程,相当于 cocoapods-packager 前半部分功能的增强版。目前这个插件支持 CocoaPods 1.6.0 beta 版本,不想用 cocoapods-packager 的开发者,可以先利用 cocoapods-generate 创建目标工程,然后接管构建二进制包的后续操作,可以选择自己实现打包脚本,也可以选择使用 Carthage。


关于 Carthage 如何打 static-framework ,可以参照 Build static frameworks to speed up your app’s launch times 。其中有一步是将需要打包的 scheme 设置为 shared ,这个 scheme 对应 CocoaPods 组件的 develpement pod ,一般来说通过 CocoaPods 模版工程或者 cocoapods-generate 插件生成目标工程的 scheme 都是 shared 的,如果没有 shared ,可参照让 CocoaPods 组件支持 Carthage 打包一文进行设置。


构建出 .framework 文件后,需要对其进行压缩,我们使用以下命令将文件压缩成 zip 格式:


zip --symlinks -r TDFNavigationBarKit.framework.zip TDFNavigationBarKit.framework
复制代码


通过上述两个步骤,我们就得到了组件的二进制 zip 包。


需要注意的是,如果使用 cocoapods-packager 打包,其 .framework 中的目录结构如下 :


TDFNavigationBarKit.framework/├── Headers -> Versions/Current/Headers├── Modules│   └── module.modulemap├── Resources -> Versions/Current/Resources├── TDFNavigationBarKit -> Versions/Current/TDFNavigationBarKit└── Versions    ├── A    │   ├── Headers    │   │   ├── TDFNavigationBarKit.h    │   │   ├── UIViewController+BackgroundConfigure.h    │   │   └── UIViewController+NavigationBarConfigure.h    │   ├── Resources    │   │   └── Media.xcassets    │   │       ├── Contents.json    │   │       ├── common_nbc_back.imageset    │   │       │   ├── Contents.json    │   │       │   └── common_nbc_back.png    │   │       ├── common_nbc_cancel.imageset    │   │       │   ├── Contents.json    │   │       │   └── common_nbc_cancel.png    │   │       ├── common_nbc_ok.imageset    │   │       │   ├── Contents.json    │   │       │   └── common_nbc_ok.png    │   └── TDFNavigationBarKit    └── Current -> A
复制代码


可以看到,其中的 HeadersResourcesVersions/Current 都是软链接。podspec 中涉及到文件匹配的字段,如 source_filespublic_header_filesresources 等,对软链接是无效的,所以需要设置为文件实际存放的路径:


s.source_files = TDFNavigationBarKit.framework/Versions/A/Headers/*.hs.public_header_files = TDFNavigationBarKit.framework/Versions/A/Headers/*.h
# 或者更全面一点s.source_files = TDFNavigationBarKit.framework/Versions/A/Headers/*.h, TDFNavigationBarKit.framework/Headers/*.hs.public_header_files = TDFNavigationBarKit.framework/Versions/A/Headers/*.h, TDFNavigationBarKit.framework/Headers/*.h
复制代码


针对二进制包的制作,我们创建了以下命令供团队内部使用:


# 将源码打包成二进制,并压缩成 zip 包pod binary package
复制代码

存储二进制包

通常二进制包存放的地址有两种,目前我们使用的是第二种 ( 服务器代码可参照 binary-server ):


  • 组件所在 git 仓库

  • 静态文件服务器


相较于 git 仓库,我认为存放至静态文件服务器的优势如下:


  • 接口访问,易于扩展与自动化处理

  • 源码和二进制分离,依赖二进制时,只下载二进制包比 clone 仓库快

  • 不会增大 git 仓库大小,这点也涉及到源码依赖的下载速度


这里说下为什么我们对组件的下载速度这么敏感。


首先,CocoaPods 针对下载的组件是有缓存的,在第一次下载后,CocoaPods 会将组件存放在 Caches 文件夹中,后续 install 操作会先从 Caches 中查找是否有此组件的缓存,如果没有的话,再执行下载流程(是不是感觉和 SDWebImage 有点像)。但是目前 CocoaPods 在同一台机器上,只能有一个版本的缓存 ( ~/Library/Caches/CocoaPods/Pods 下的 VERSION 记录着当前缓存对应的 CocoaPods 版本 ),也就是说我第一次使用 pod _1.5.3_ install 下载了所有组件,再执行 pod _1.4.1_ install , CocoaPods 会把 1.5.3 版本的所有组件缓存清空,然后重新下载 。


由于团队内部只有 5 台 Mac mini 机器,我们只能在机器上同时部署 GitLab CI Runner 和 Jenkins Slaver ,CI 脚本中使用的 CocoaPods 版本可以统一控制成 1.4.0 ( 这里不使用最新的 1.5.3 是由于这个 bug 会导致 lint 失败),但是其他业务线打包时使用的 CocoaPods 版本就没法统一了,有 1.5.3 的,有 1.6.0.beta 的,加上各业务线的打包频率还比较高,导致机器频繁地在不同 CocoaPods 版本中切换 。


结合上诉两个原因,我们趋向采用下载速度更快的方案。


针对二进制包的增删查,我们创建了以下命令供团队内部使用:


# 查看所有二进制版本信息pod binary list # 查找组件二进制版本信息pod binary search NAME# 下载二进制 zip 包pod binary pull NAME VERSION# 推送二进制 zip 包 pod binary push [PATH] [-name=组件名] [--version=版本号] [--commit=版本日志]     
复制代码

切换依赖方式

二进制化后,整体构建速度变快了,但是不利于开发人员跟踪调试,所以就需要有依赖切换功能。这里所说的依赖切换功能包括整个工程、单个组件的切换,以及二进制版本的使用封装,这也是组件二进制化耗费时间和精力最多的地方。


在整个过程中,我总共尝试了三种方案,分别是单私有源单版本、单私有源双版本以及最终采用的双私有源单版本。下面我会简单地说下各方案以及实践中遇到的问题。

单私有源单版本

在不更改私有源和组件版本的前提下,通过动态变更源码 podspec,达到切换依赖的目的


单私有源单版本是我第一次实践采用的方案,也创建了对应的插件 cocoapods-tdfire-binary ,这里结合插件的实现过程,聊聊实现这类方案时遇到的坑。


前期调研二进制化方案时,我主要参考了 iOS CocoaPods组件平滑二进制化解决方案 一文,所以整体思路和这篇文章差不多,也是通过环境变量加判断语句实现 podspec 的内容变更(虽说 podspec 支持使用 ruby 语法定制,我还是建议最终以 json 格式发布到私有源上,因为 CocoaPods 内部会将 podspec json 化后再执行一些操作,比如缓存,如果这一动作不幂等,操作结果便是不可预知的,从而破坏 CocoaPods 自身的运行机制)。


这种方案最大的困扰在于切换依赖时,如何规避组件缓存带来的负面影响,处理不当容易出现工程组件目录为空的情况,以下是我实践过的两种方案:


  1. 确保缓存中同时存在源码和二进制的资源及文件(设置 preserve_paths)

  2. 切换依赖前,删除目标组件缓存以及本地 Pods 下的组件目录


在使用二进制服务器的前提下,方案一的常见实现方式为,在 pre_command 中设置下载二进制包脚本,并设置 preserve_paths ,让 CocoaPods 同时保留两种依赖方式所需要的文件即可。考虑到组件本身有二进制版本,组件 Cache 还没有下载的情况,这种方案通常辅以方案二。由于需要同时下载两种依赖的资源,个人并不是很喜欢这种方案,这也是我们弃用 cocoapods-tdfire-binary 的主要原因。


方案二需要 hook Pod::Installer 类的 resolve_dependencies 方法,在这个方法中清除缓存及本地资源,并且设置组件的沙盒变动标记,这样 CocoaPods 就会重新下载对应的组件了:


def cache_descriptors  @cache_descriptors ||= begin    cache = Downloader::Cache.new(Config.instance.cache_root + 'Pods')    cache_descriptors = cache.cache_descriptors_per_pod  endend
def clean_local_cache(spec) pod_dir = Config.instance.sandbox.pod_dir(spec.root.name) framework_file = pod_dir + "#{spec.root.name}.framework" if pod_dir.exist? && !framework_file.exist? # 设置沙盒变动标记,去 cache 中拿 # 只有 :changed 、:added 两种状态才会重新去 cache 中拿 @analysis_result.sandbox_state.add_name(spec.name, :changed) begin FileUtils.rm_rf(pod_dir) rescue => err puts err end endend
def clean_pod_cache(spec) descriptors = cache_descriptors[spec.root.name] return if descriptors.nil? descriptors = descriptors.select { |d| d[:version] == spec.version} descriptors.each do |d| # pod cache 文件名由文件内容的 sha1 组成,由于生成时使用的是 podspec,获取时使用的是 podspec.json 导致生成的目录名不一致 # Downloader::Request slug # cache_descriptors_per_pod 表明,specs_dir 中都是以 .json 形式保存 spec slug = d[:slug].dirname + "#{spec.version}-#{spec.checksum[0, 5]}" framework_file = slug + "#{spec.root.name}.framework" unless (framework_file.exist?) begin FileUtils.rm(d[:spec_file]) FileUtils.rm_rf(slug) rescue => err puts err end end endend
复制代码


需要注意的是,CocoaPods 在 podspec 不是 json 格式时,缓存目录是有问题的,所以需要我们自己去拼装缓存路径后再执行删除动作。


使用 cocoapods-tdfire-binary 时,我们需要在 podspec 文件中添加以下代码:


....tdfire_source_configurator = lambda do |s|  # 源码依赖配置  s.source_files = '${POD_NAME}/Classes/**/*'  s.public_header_files = '${POD_NAME}/Classes/**/*.{h}'endunless %w[tdfire_set_binary_download_configurations tdfire_source tdfire_binary].reduce(true) { |r, m| s.respond_to?(m) & r }  tdfire_source_configurator.call selse  # 内部生成源码依赖配置  s.tdfire_source tdfire_source_configurator  # 内部生成二进制依赖配置  s.tdfire_binary tdfire_source_configurator  # 设置下载脚本,preseve_paths  s.tdfire_set_binary_download_configurationsend
复制代码


然后在 Podfile 使用以下语句切换依赖:


...plugin 'cocoapods-tdfire-binary'
tdfire_use_binary!
# tdfire_third_party_use_binary!tdfire_use_source_pods ['AFNetworking']...
复制代码


由于编写此插件时,我对 CocoaPods 源码以及 ruby 并不熟悉,导致我没有把 podspec 的配置放到插件内部,现在回过头看,更加合理的做法应该是在 podspec 中设置依赖标志,然后在 hook 的 resolve_dependencies 方法中,变更 podspec 的 source 及依赖相关的字段,这样的话,只需要采用上诉的方案二即可。


可以看到,单私有源单版本对 CocoaPods 缓存策略的侵入还是比较大的。


这里顺便说下 cocoapods-tdfire-binary 是如何处理 subspec 的,首先要说明的是,对于存在 subspec 的组件,我们将其整体打为一个二进制包,并没有分 subspec 构建。假设有组件 A ,B,他们对应的部分 podspec 如下:


# APod::Spec.new do |s|  s.name             = 'A'  ...  s.subspec 'Core' do |ss|    ss.source_files = 'A/Classes/A.{h,m}'  end  s.subspec 'Model' do |ss|    ss.dependency 'A/Core'    ss.dependency 'YYModel'    ss.source_files = 'A/Classes/Next.{h,m}'  end  s.subspec 'Image' do |ss|    ss.dependency 'A/Core'    ss.dependency 'SDWebImage'    ss.source_files = 'A/Classes/Prev.{h,m}'  end  ...end
# BPod::Spec.new do |s| s.name = 'B' ... s.dependency 'A/Model' ...end
复制代码


当 B 为源码版本,A 为二进制版本时,A 的 subspec 必须要包含 Model ,也就是说 A 的二进制 podspec 必须保证源码 podspec 中的 subspec 都存在,这样切换依赖时才不会出错。 cocoapods-tdfire-binary 在组件 A 为二进制版本时,会动态创建一个名为 TdfireBinary 的 default subspec ,然后将源码 subspec 的依赖上移至 TdfireBinary :


# APod::Spec.new do |s|  s.name             = 'A'  ...  s.subspec 'TdfireBinary' do |ss|  ss.vendored_frameworks = "A.framework"    ss.source_files = "A.framework/Headers/*", "A.framework/Versions/A/Headers/*"    ss.public_header_files = "A.framework/Headers/*", "A.framework/Versions/A/Headers/*"    ss.dependency 'YYModel'        ss.dependency 'SDWebImage'  end  s.subspec 'Core' do |ss|    ss.dependency 'A/TdfireBinary'  end  s.subspec 'Model' do |ss|    ss.dependency 'A/TdfireBinary'  end  s.subspec 'Image' do |ss|  ss.dependency 'A/TdfireBinary'  end  ...end
复制代码


以下是我们实现过程中遇到的部分问题:


  • 二进制版本时,依赖 subspec 会引入整个组件

  • 需要拷贝 subspec 的属性至 TdfireBinary ,实现起来比较繁琐

  • 由于是在插件内部对 podspec 进行转化,扩展性比较差


基于以上问题,我们后续创建 cocoapods-bin 插件时,就把这部分工作交给使用者处理了,如果组件拥有 subspec,那么就需要使用者提供一个模版二进制 podspec ,插件只负责同步 source 和 version。


另外,在大部分情况下,我更建议对功能不纯粹的组件进行物理剥离,而不是组件内部再划分 subspec ,subspec 这种结构不仅会增加组件二进制化的难度,而且会造成 lint 耗时成倍增加,大大降低 lint 执行效率。

单私有源双版本

在不更改私有源的前提下,通过变更组件版本(版本号加 -binary),达到切换依赖的目的


由于单私有源单版本要么需要同时下载两种版本的资源,要么切换依赖时需要重新下载目标版本的资源,我们决定以组件缓存为切入点,按照 CocoaPods 的设计规则,将二进制版本和源码版本从物理上区分开来。


最初我想到的就是使用双版本,在源码版本号后添加 -binary,即预发布版本,作为二进制版本的版本号。接下来只要在 CocoaPods 使用源码 podspec 下载资源前,将其替换为二进制 podspec 就可以实现二进制版本的切换了。


首先,我们来看下 Pod::Resolver 类,这个类会给 target 创建最终可用的 specifications ,只不过依赖分析工作并不在 Pod::Resolver 中进行,它扮演了类似 DataSource 的角色,将需要分析的数据提供给 Molinillo::Resolver 类处理。


这里说下我尝试从依赖分析切入时遇到的问题。要成为 Molinillo::Resolver 的数据源,需要实现/覆盖 Molinillo::SpecificationProvider 模块中的方法,以下是 Pod::Resolver 实现的 search_for :


def search_for(dependency)  @search ||= {}  @search[dependency] ||= begin    locked_requirement = requirement_for_locked_pod_named(dependency.name)    additional_requirements = Array(locked_requirement)    specifications_for_dependency(dependency, additional_requirements)  end  @search[dependency].dupenddef specifications_for_dependency(dependency, additional_requirements = [])  requirement = Requirement.new(dependency.requirement.as_list + additional_requirements.flat_map(&:as_list))  find_cached_set(dependency).    all_specifications(installation_options.warn_for_multiple_pod_sources).    select { |s| requirement.satisfied_by? s.version }.    map { |s| s.subspec_by_name(dependency.name, false, true) }.    compactend
复制代码


当时我通过 hook specifications_for_dependency 方法,更改了 requirement ,以使方法返回我想要的 specification,最终也实现了替换 specification 的目的。但是在执行 lint, push 等操作时,由于 Podfile 为内部自动生成,很多组件都是间接依赖的,在目标组件的 podspec 中并没有声明版本,比如间接依赖了 YYModel ,requirement 为 ~> 1.0 ,如果替换 requirement 为 = 1.0.1-binary 就会出现以下错误:


Due to the previous naïve CocoaPods resolver, you were using a pre-release version of `YYModel`, without explicitly asking for a pre-release version, which now leads to a conflict. Please decide to either use that pre-release version byadding the version requirement to your Podfile (e.g. `pod 'YYModel', '= 1.0.1-binary, ~> 1.0'`) orrevert to a stable version by running `pod update YYModel`
复制代码


要解决这个问题,可以显式依赖一个预发布版本,也可以更改 requirement_satisfied_by? 方法的处理逻辑。


当然,我们也不可能会在 podspec 中显式依赖一个预发布版本,也不想过多干涉 CocoaPods 的依赖分析逻辑,所以这条路最终失败了。实际上我们并不需要关心依赖是如何分析的,只需要等依赖分析完,将最终生成的 specification 替换掉即可,让我们看下 Pod::Resolver 的 resolve 方法:


def resolve  dependencies = @podfile_dependency_cache.target_definition_list.flat_map do |target|    @podfile_dependency_cache.target_definition_dependencies(target).each do |dep|      next unless target.platform      @platforms_by_dependency[dep].push(target.platform)    end  end  @platforms_by_dependency.each_value(&:uniq!)  @activated = Molinillo::Resolver.new(self, self).resolve(dependencies, locked_dependencies)  resolver_specs_by_targetrescue Molinillo::ResolverError => e  handle_resolver_error(e)end
def resolver_specs_by_target @resolver_specs_by_target ||= {}.tap do |resolver_specs_by_target| dependencies = {} @podfile_dependency_cache.target_definition_list.each do |target| specs = @podfile_dependency_cache.target_definition_dependencies(target).flat_map do |dep| name = dep.name node = @activated.vertex_named(name) (valid_dependencies_for_target_from_node(target, dependencies, node) << node).map { |s| [s, node.payload.test_specification?] } end
resolver_specs_by_target[target] = specs. group_by(&:first). map do |vertex, spec_test_only_tuples| test_only = spec_test_only_tuples.all? { |tuple| tuple[1] } payload = vertex.payload spec_source = payload.respond_to?(:spec_source) && payload.spec_source ResolverSpecification.new(payload, test_only, spec_source) end. sort_by(&:name) end endend
复制代码


上面的 resolver_specs_by_target 方法返回就是最终结果,我们只需要变更其返回值就可以了。为了不污染源码私有源以及能更好地维护源码和二进制 podspec ,我们最终没有采用单私有源双版本,而是采用了双私有源单版本,不过两者的实现思路和入口差不多是一致的,这次尝试也给后续的实践铺了路。

双私有源单版本

在不更改组件版本的前提下,通过变更组件的私有源,达到切换依赖的目的


双私有源分别为源码私有源和二进制私有源,这两个私有源中有相同版本组件,只是 podspec 中的 source 和依赖等字段不一样,所以切换了组件对应的私有源即切换了组件的依赖方式。


以 YYModel 为例,现有源码私有源 cocoapods-spec 及 二进制私有源 cocoapods-spec-binary ,它们都有 YYModel 组件 1.0.4.2 版本的 podspec 如下:


# cocoapods-spec {  "name": "YYModel",  "summary": "High performance model framework for iOS/OSX.",  "version": "1.0.4.2",  "license": {    "type": "MIT",    "file": "LICENSE"  },  "authors": {    "ibireme": "ibireme@gmail.com"  },  "social_media_url": "http://blog.ibireme.com",  "homepage": "https://github.com/ibireme/YYModel",  "platforms": {    "ios": "6.0",    "osx": "10.7",    "watchos": "2.0",    "tvos": "9.0"  },  "source": {    "git": "git@git.xxxxx.net:cocoapods-repos/YYModel.git",    "tag": "1.0.4.2"  },  "frameworks": [    "Foundation",    "CoreFoundation"  ],  "requires_arc": true,  "source_files": "YYModel/*.{h,m}",  "public_header_files": "YYModel/*.{h}"}
# cocoapods-spec-binary { "name": "YYModel", "summary": "High performance model framework for iOS/OSX.", "version": "1.0.4.2", "authors": { "ibireme": "ibireme@gmail.com" }, "social_media_url": "http://blog.ibireme.com", "homepage": "https://github.com/ibireme/YYModel", "platforms": { "ios": "6.0" }, "source": { "http": "http://iosframeworkserver-shopkeeperclient.app.2dfire.com/download/YYModel/1.0.4.2.zip" }, "frameworks": [ "Foundation", "CoreFoundation" ], "requires_arc": true, "source_files": [ "YYModel.framework/Headers/*", "YYModel.framework/Versions/A/Headers/*" ], "public_header_files": [ "YYModel.framework/Headers/*", "YYModel.framework/Versions/A/Headers/*" ], "vendored_frameworks": "YYModel.framework"}

复制代码


当采用 YYModel 的源码版本时,我们从 cocoapods-spec 私有源获取组件的 podspec,那么下载地址为 git@git.xxxxx.net:cocoapods-repos/YYModel.git1.0.4.2 tag ;当采用 YYModel 的二进制版本时,我们从 cocoapods-spec-binary 私有源获取组件的 podspec,那么下载地址为http://iosframeworkserver-shopkeeperclient.app.2dfire.com/download/YYModel/1.0.4.2.zip


通过上个方案,我们可以知道 resolver_specs_by_target 方法创建了最终使用的 specifications ,接下来我们结合 cocoapods-bin 插件代码,看下如何切换组件的私有源:


module Pod  class Resolver    # >= 1.4.0 才有 resolver_specs_by_target 以及 ResolverSpecification    # >= 1.5.0 ResolverSpecification 才有 source,供 install 或者其他操作时,输入 source 变更    #     if Pod.match_version?('~> 1.4')       old_resolver_specs_by_target = instance_method(:resolver_specs_by_target)      define_method(:resolver_specs_by_target) do         specs_by_target = old_resolver_specs_by_target.bind(self).call()
sources_manager = Config.instance.sources_manager use_source_pods = podfile.use_source_pods
missing_binary_specs = [] specs_by_target.each do |target, rspecs| # use_binaries 并且 use_source_pods 不包含 use_binary_rspecs = if podfile.use_binaries? || podfile.use_binaries_selector rspecs.select do |rspec| ([rspec.name, rspec.root.name] & use_source_pods).empty? && (podfile.use_binaries_selector.nil? || podfile.use_binaries_selector.call(rspec.spec)) end else [] end specs_by_target[target] = rspecs.map do |rspec| # developments 组件采用默认输入的 spec (development pods 的 source 为 nil) next rspec unless rspec.spec.respond_to?(:spec_source) && rspec.spec.spec_source
# 采用二进制依赖并且不为开发组件 use_binary = use_binary_rspecs.include?(rspec) source = use_binary ? sources_manager.binary_source : sources_manager.code_source
spec_version = rspec.spec.version begin # 从新 source 中获取 spec specification = source.specification(rspec.root.name, spec_version)
# 组件是 subspec specification = specification.subspec_by_name(rspec.name, false, true) if rspec.spec.subspec? # 这里可能出现分析依赖的 source 和切换后的 source 对应 specification 的 subspec 对应不上 # 造成 subspec_by_name 返回 nil,这个是正常现象 next unless specification
# 组装新的 rspec ,替换原 rspec rspec = if Pod.match_version?('~> 1.4.0') ResolverSpecification.new(specification, rspec.used_by_tests_only) else ResolverSpecification.new(specification, rspec.used_by_tests_only, source) end rspec rescue Pod::StandardError => error # 没有从新的 source 找到对应版本组件,直接返回原 rspec missing_binary_specs << rspec.spec if use_binary rspec end
rspec end.compact end
missing_binary_specs.uniq.each do |spec| UI.message "【#{spec.name} | #{spec.version}】组件无对应二进制版本 , 将采用源码依赖." end if missing_binary_specs.any?
specs_by_target end end end
if Pod.match_version?('~> 1.4.0') # 1.4.0 没有 spec_source class Specification class Set class LazySpecification < BasicObject attr_reader :spec_source
old_initialize = instance_method(:initialize) define_method(:initialize) do |name, version, source| old_initialize.bind(self).call(name, version, source)
@spec_source = source end
def respond_to?(method, include_all = false) return super unless method == :spec_source true end end end end endend
复制代码


上面就是切换私有源的代码逻辑,可以看到还是比较简短的,这里只单独说三点:


  • 我们默认 Development Pods 中的组件为未发布组件,没有二进制版本,所以始终采用原版本

  • 因为无法直接从 source 中获取组件的 subspec ,所以这里统一获取 root spec ,如果目标 spec 是 subspec 再从 root spec 中获取 subspec

  • 其他业务线的组件可能没有二进制化版本,这里我们如果没有找到组件目标版本的 spec ,会让组件采用原版本,这样就不会因为某个组件版本的缺失而导致 install 失败。


存在两个私有源意味着会有两个不同的 podspec ,分别为源码 podspec 和二进制 podspec ,手动同步这两个 podspec 将会是一个很耗费精力的事情,这时候就需要 cocoapods-bin 插件的辅助命令了。针对没有 subspec 的组件,cocoapods-bin 会根据源码 podspec 自动生成对应的二进制 podspec ;针对有 subspec 的组件,cocoapods-bin 会根据使用者提供的 template podspec 和源码 podspec 自动生成对应的二进制 podspec 。由于源码 podspec 和二进制 podspec 的 diff 是可预见的,我们就可以通过这种半自动的方式避免同时维护两套 podspec 。


更多使用信息可以查看 cocoapods-bin 的 README ,这里就不赘述了。

整合 CI

从上文可以看出,二进制化还是增加了重复性工作,包括制作二进制包、发布二进制版本等,如果不辅以自动化工具,无疑会增加组件维护者的工作。


火掌柜 iOS 团队 GitLab CI 集成实践的基础上,我们对 CI 配置文件做了些调整:


variables:  # 二进制优先  BINARY_FIRST: 1   # 不允许通知   DISABLE_NOTIFY: 0
before_script: # https://gitlab.com/gitlab-org/gitlab-ce/issues/14983 # shared runner 会出现,special runner只会报warning - export LANG=en_US.UTF-8 - export LANGUAGE=en_US:en - export LC_ALL=en_US.UTF-8 - pwd - git clone git@git.xxxxx.net:ios/ci-yaml-shell.git - ci-yaml-shell/before_shell_executor.sh
after_script: - rm -fr ci-yaml-shell
stages: - check - lint - test - package - publish - report - cleanup
component_check: stage: check script: - ci-yaml-shell/component_check_executor.rb only: - master - /^release.*$/ - /^hotfix.*$/ - tags - CI tags: - iOSCI environment: name: qa...
package_framework: stage: package only: - tags script: - ci-yaml-shell/framework_pack_executor.sh tags: - iOSCD environment: name: production
publish_code_pod: stage: publish only: - tags retry: 0 script: - ci-yaml-shell/publish_code_pod.sh tags: - iOSCD environment: name: production
publish_binary_pod: stage: publish only: - tags retry: 0 script: - ci-yaml-shell/publish_binary_pod.sh tags: - iOSCD environment: name: production
report_to_director: stage: report script: - ci-yaml-shell/report_executor.sh only: - master - tags when: on_failure tags: - iOSCD
复制代码


推送 tag 后,如果一切顺利,可以看到 pipeline 执行结果如下:



其中的 package 、 publish 这两个 stage 囊括了二进制化资源制作的主要工作,组件维护者依然可以像二进制化前一样,关注源码版本的发布流程即可。


这里需要注意的是,由于 CocoaPods push 的 Validator 和 lint 基本一致,上文提到的这个 bug ,对 publish stage 也会有影响,需要暂时指定 CocoaPods 为 1.4.0 版本(pod _1.4.0_ bin repo push)。

总结

整个组件二进制化的尝试与实践,耗费了我大半年的主要精力,并且我们还需要多维护一个二进制文件服务器,以及对应的二进制版本,在组件 / 代码不多时,做这件事情费时费力,还收效甚微,因此我并不建议还未进行业务组件化并且没有上 CI 的团队去做这件事情。


结合我们团队目前的业务性质以及业务组件化进程,在团队实施了组件二进制化之后,团队内部工程编译速度的提升还是显而易见的,并且受益于编译时间的减少,组件自动发布平台的发布时间也大大减少,所以对于我们来说,花时间去做这件事情还是值得的。

参考

iOS CocoaPods组件平滑二进制化解决方案


iOS CocoaPods组件平滑二进制化解决方案及详细教程二之subspecs篇


组件化-二进制方案


2019-02-21 15:206174

评论

发布
暂无评论
发现更多内容

视觉体验全面升级,豪威集团与英特尔Evo 3.0共同加速PC产业变革

科技之家

2022-Java后端工程师面试指南-(并发-多线程)

自然

多线程 并发 7月月更

现在加盟自助洗车是否还来得及

共享电单车厂家

自助洗车加盟 加盟自助洗车 车白兔自助洗车

5. 数据访问 - EntityFramework集成

MASA技术团队

C# .net 微软 后端 Framework

华律网牵手观测云,上线系统全链路可观测平台

观测云

Vue和小程序的关系

Geek_99967b

小程序 Vue

尚硅谷尚优选项目教程发布

小谷哥

超分辨率技术在实时音视频领域的研究与实践

网易云信

实时音视频

彻底理解为什么网络 I/O 会被阻塞?

C++后台开发

网络编程 socket 非阻塞网络I/O C++后台开发 C++开发

通过的英特尔Evo 3.0整机认证到底有多难?忆联科技告诉你

科技之家

【网易云信】超分辨率技术在实时音视频领域的研究与实践

网易智企

实时音视频

养不起真猫,就用代码吸猫 -Unity 粒子实现画猫咪

芝麻粒儿

游戏 Unity 特效 7月月更

MySQL数据库索引教程(超详细)

Albert Edison

7月月更

RedHat7.4配置yum软件仓库(RHEL7.4)

Albert Edison

7月月更

HiEngine:可媲美本地的云原生内存数据库引擎

华为云开发者联盟

数据库 华为云 内容数据库引擎

自助共享洗车能挣钱么?分析下

共享电单车厂家

自助洗车加盟 车白兔自助洗车 自助洗车费用

自助洗车加盟门槛如何?高不高

共享电单车厂家

自助洗车加盟费 车白兔自助洗车 自助洗车加盟门槛

无人自助洗车机投放选址有啥要点

共享电单车厂家

自助洗车加盟 车白兔自助洗车 自助洗车机投放

CODING DevSecOps 助力金融企业跑出数字加速度

CODING DevOps

研发效能 DevSecOps CODING 代码评审 持续安全交付

Python|数据结构——列表和元组

AXYZdong

7月月更

我们为什么要学习数学建模?

图灵教育

数学 数学建模

单商户 V4.4,初心未变,实力依旧!

CRMEB

Web3.0时代来了,看天翼云存储资源盘活系统如何赋能新基建(下)

天翼云开发者社区

数字化 云存储

企业级数据安全,天翼云是这样理解的

天翼云开发者社区

数据安全

Python 入门指南之Python 简介

海拥(haiyong.site)

Python 7月月更

详解SQL中Groupings Sets 语句的功能和底层实现逻辑

华为云开发者联盟

数据库 sql 聚合函数

来看一看智能自助洗车怎么加盟?

共享电单车厂家

自助洗车加盟 加盟自助洗车 车白兔自助洗车

EMQX 5.0 发布:单集群支持 1 亿 MQTT 连接的开源物联网消息服务器

EMQ映云科技

物联网 IoT mqtt #开源 7月月更

更严苛的英特尔Evo 3.0,正在让合作伙伴们上瘾

科技之家

践行自主可控3.0,真正开创中国人自己的开源事业

极狐GitLab

git DevOps gitlab 自主可控 极狐GitLab

跨境支付平台 XTransfer 的低代码实践:如何与其他中台融合是核心

XTransfer技术

技术 前端

火掌柜iOS端基于CocoaPods的组件二进制化实践_语言 & 开发_宋瑞旺_InfoQ精选文章