HarmonyOS开发者限时福利来啦!最高10w+现金激励等你拿~ 了解详情
写点什么

支付宝风控的无人驾驶方案,实现风控策略精准推荐

  • 2019-09-05
  • 本文字数:2077 字

    阅读完需:约 7 分钟

支付宝风控的无人驾驶方案,实现风控策略精准推荐

小蚂蚁说:

近年来自动驾驶技术大红大紫,从 Google 无人驾驶汽车到 Tesla Model-S 量产,无人驾驶技术慢慢从概念走向了现实。如今,“自动驾驶”的概念则被支付宝创新性地应用到了风控领域,通过 AI 技术颠覆传统风控的运营模式,实现风控领域的“无人驾驶”技术。

作为移动支付领航者的支付宝,借助大数据和 AI 技术,并历经十多年的发展,更是构建了世界级领先的风控技术能力。今天来给大家分享 AlphaRisk 四大核心模块之一的 AutoPilot 整体方案。


随着人工智能的热潮推进,支付宝风控引擎也从 CTU 时代直接进入 AlphaRisk 时代,开启了人工智能驱动的支付风控的新纪元。其中,最大的改变就是 AI 算法的全面应用,以及引擎功能模块的升级。AutoPilot 作为 AlphaRisk 四大核心模块之一,目标是实现用户核身方式的精准推送。


有别于经典的基于专家经验的风控策略,以及单一模式的核身推荐,AutoPilot 通过半监督算法和进化算法实现了用户个性化的风险控制策略,不同用户的核身认证方式因场景、时间和地点的不同而不同,同时大大提升了风险控制的精确性、实现风控运营自动化能力。


不仅如此,在 2017 年天猫双十一,AutoPilot 首次面对大促交易峰值的考验,实现了完全无人风控策略调整,风控引擎自动根据交易流量和风险变化动态调整风险控制强度。


下面,我们从技术的角度出发,给大家揭秘 AutoPilot 的方案思想。

AutoPilot 的核心思想

1) 用户分群


用户分群是通过决策树算法+德尔斐法相结合而得,综合考虑了分群的稳定性、业务含义和风险概率,既从大数据角度出发科学分群,又包含了特定的业务含义。


2) 多目标优化


风险决策策略推荐需要解决的问题是求满足多业务目标(打扰率、覆盖率、失败率和限权率)的最优解。这是一个典型多目标优化问题。



而现实世界的多目标优化问题存在两个困难:相互制衡或冲突的目标和复杂的解空间。因此多目标问题不存在单一最优解,而是存在一组帕累托最优前沿(Pareto-optimal),在缺乏主观偏好函数下无法进行解之间的权衡,使得解空间可能非常复杂和庞大,所以高效率而精确的求解极为困难。



所以朴素的思想是:先推导出一组帕累托最优前沿,然后选择一个最优解,可以有下面三种具体实现方法:


i. 先决策后搜索,根据人为偏好,将多目标融合转化为单目标,此方法需要对业务有深入的理解;


ii. 先搜索后决策,先搜索出一组最优解,再根据偏好选择其中一个解,此方法需要较长的计算时间;


iii. 同时搜索和决策,每一步的搜索结果输出给人工进行交互;


自然而然,进化算法成为最好的选择之一。


进化算法的概念如下:


  • 维持一组候选解集合(population)

  • 评价种群中个体的适应度(fitness)

  • 进行选择操作(selection),高质量的个体保留进入操作池

  • 进行杂交和变异(crossover/mutation)操作,产生下一代种群


进化算法的目标为尽可能的靠近帕累托前沿,而且解的分布尽可能的广泛,使种群有较好的差异性。



最终的算法我们采用了基于 RWGA 的改进: Random Weight Based + niche method。具体算法步骤如下:


step1: 生成初始随机种群 E;


step2: 对种群中每个个体赋予一个适应度:对每个个体,基于随机权重 w,汇总多目标函数为一个原始的适应度值;同时根据个体周围的生态拥挤程度,对适应度进行惩罚调整;


step3: 基于适应度计算选择概率;


step4: 基于选择概率选择杂交父母,杂交后进行变异操作,得到集合 Q;


step5: 合并 E 和 Q,选择适应度靠前的子集进入下一代;


step6: 若不满足停止条件,则 step2;

AutoPilot 的应用结果

AutoPilot 实现了风险覆盖和用户打扰的最佳平衡,在保障风险资损低水位的基础上,实现了管控方案从千人一面向千人千面的转换。当交易被识别存在风险时,AutoPilot 可自动推荐最适合这个会员,且最安全的管控方案,实现用户核身体验的最优化。以 O2O 线下支付场景为例,该场景最常见的风险为的用户手机丢失(即用户手机丢失后,被非本人使用),AutoPilot 通过 AI 算法匹配,优先推荐人脸等生物核身手段,而非传统或静态核身方式,以有效保障账户资金安全。


同时,AutoPilot 实现了风险防控策略的自助运营,极大减少人工干预。2017 年天猫双十一大促,AutoPilot 首次落地应用,根据交易流量和风险变化动态自动调整模型和策略的管控力度,实现了无人调配策略的可能,并经受住了大促时期黑产的攻击。

总结

总而言之, AlphaRisk 的核心内容是人类直觉 AI(Analyst Intuition)和机器智能 AI(Artificial Intelligence)相结合,打造具有机器智能的风控系统。而 AutoPilot 作为 AlphaRisk 的核心功能,最大用的意义在于“科学决策”和“无人驾驶”


2017 年初,支付宝开始建设 AlphaRisk 风控大脑,愿景是探索风控领域的无人驾驶技术。AlphaRisk 项目 1 期上线后,**支付宝的资损率从原先十万分之 1 下降至百万分之 0.5 以内 ,让欺诈损失率低于任何银行卡服务。**目前,支付宝的资损率仅为国外先进第三方支付公司资损率的 1/200,处于行业的绝对领先水平。而这一切,都是为了支付宝的用户能够用户更极致的安全和更完美的体验。


本文转载自公众号蚂蚁金服科技(ID:Ant-Techfin)。


原文链接:


https://mp.weixin.qq.com/s/CITbKFvGbCfnD8Jw0X0lCQ


2019-09-05 17:211759
用户头像

发布了 150 篇内容, 共 34.4 次阅读, 收获喜欢 38 次。

关注

评论

发布
暂无评论
发现更多内容

“四个维度” 讲明白什么是微服务!

攀岩飞鱼

微服务 单体系统 架构设计 团队组织 康威定律

Java实现Base64

Java

程序员的晚餐 | 5 月 15 日 如果不写代码了,那就开个饺子店

清远

美食

网站系统架构演进

Janenesome

读书笔记 程序员 架构 系统设计

回“疫”录(17):返宁的前一天

小天同学

疫情 回忆录 现实纪录 纪实

奔腾吧,“后浪”李子柒!

无量靠谱

网红

Azure App 部署Django 和 PostgrSQL

yann [扬] :曹同学

Python azure

谈谈控制感(4):损失的后果很严重

史方远

职场 心理 成长

记一次MHA切换故障踩的坑

一个有志气的DB

MySQL 高可用 复制 主从同步 故障分析

一篇文章搞定Java处理Excel的各种疑难杂症

知春秋

Java Excel POI

浅析 - CocoaLumberjack 3.6 之 DatabaseLogger

Edmond

ios sqlite log4j CocoaLumberjack DDLog

决战下半场:小程序技术助力金融APP重回C位

FinClip

小程序 数字化转型 app重构

Web3极客日报#140

谢锐 | Frozen

区块链 独立开发者 技术社区 Rebase Web3 Daily

谈谈双亲委派模型的第四次破坏-模块化

寻筝

Java JVM

数列找规律的问题

oldj

数学

elasticsearch源码解析(一)——restapi

罗琦

elasticsearch 源码分析 RESTful

零基础如何学架构

兆熊

架构

高仿瑞幸小程序 09 云数据库初体验

曾伟@喵先森

小程序 微信小程序 大前端 移动

服务发现:ZooKeeper vs etcd vs Consul

Tux Hu

Docker 容器 微服务 etcd Consul

找一个更好的理由

史方远

职场 成长 工作

阿里巴巴泰山版《Java 开发者手册》,也是一份防坑指南

古时的风筝

Java规范 Java开发手册

战略懒惰有多可怕

Neco.W

创业 重新理解创业 初创公司

经历过疫情,你懂得了什么

Winann

疫情 个人成长 生活 成长

如何在 Mac 上优雅的截图和录屏

Winann

macos 效率 效率工具 Mac

游戏夜读 | Scikit-learn的2018自述

game1night

看完这篇HTTP,跟面试官扯皮就没问题了

苹果看辽宁体育

https okhttp

初次见面

KAMI

JVM源码分析之Object.wait/notify实现

猿灯塔

JVM

Leetcode 556. Next Greater Element III

隔壁小王

算法

游戏发行中学到的重要经验(严肃长文)

谢锐 | Frozen

独立开发者 游戏开发 游戏出海 移动互联网

为什么软件开发很难外包

刘华Kenneth

外包 DevOps 风险 背锅

支付宝风控的无人驾驶方案,实现风控策略精准推荐_文化 & 方法_Geek_cb7643_InfoQ精选文章