写点什么

ASGD

  • 2019-11-29
  • 本文字数:1833 字

    阅读完需:约 6 分钟

ASGD

简介

Asynchronous Stochastic Gradient Descent (ASGD)异步的随机梯度下降在深度学习模型的训练中经常被用到,但是会存在 delayed gradients 的问题,就是当一个 worker 向参数 server 端提交它算出的梯度时,server 端其实已经被其它 worker 更新好多次了。因此该工作提出了梯度补偿的概念,主要方法是利用梯度函数的泰勒展开去有效逼近 loss 函数的 Hessian 矩阵。通过在 cifar 和 imagenet 数据集上验证,实验结果显示,新的方法 DC-ASGD 性能优于同步 SGD 和异步 SGD,几乎接近序列 SGD 的性能。

ASGD 介绍

传统的 SGD,更新公式为:



其中,wt 为当前模型,(xt, yt)为随机抽取的数据,g(wt; xt, yt)为(xt, yt)所对应的经验损失函数关于当前模型 wt 的梯度,η为步长/学习率。


同步随机梯度下降法(Synchronous SGD)在优化的每轮迭代中,会等待所有的计算节点完成梯度计算,然后将每个工作节点上计算的随机梯度进行汇总、平均并上面的公式更新模型。之后,工作节点接收更新之后的模型,并进入下一轮迭代。由于 Sync SGD 要等待所有的计算节点完成梯度计算,因此好比木桶效应,Sync SGD 的计算速度会被运算效率最低的工作节点所拖累。


异步随机梯度下降法(Asynchronous SGD)在每轮迭代中,每个工作节点在计算出随机梯度后直接更新到模型上,不再等待所有的计算节点完成梯度计算。因此,异步随机梯度下降法的迭代速度较快,也被广泛应用到深度神经网络的训练中。然而,Async SGD 虽然快,但是用以更新模型的梯度是有延迟的,会对算法的精度带来影响。如下图:



在 Async SGD 运行过程中,某个工作节点 Worker(m)在第 t 次迭代开始时获取到模型的最新参数 [公式] 和数据(xt, yt),计算出相应的随机梯度 [公式] ,并将其返回并更新到全局模型 w 上。由于计算梯度需要一定的时间,当这个工作节点传回随机梯度[公式]时,模型[公式]已经被其他工作节点更新了τ轮,变为了 [公式] 。也就是说,Async SGD 的更新公式为:



可以看到,对参数[公式]更新时所使用的随机梯度是 g(wt),相比 SGD 中应该使用的随机梯度 g(wt+τ)产生了τ步的延迟。因而,我们称 Async SGD 中随机梯度为“延迟梯度”。


延迟梯度所带来的最大问题是,由于每次用以更新模型的梯度并非是正确的梯度,因为 g(wt) ≠ g(wt+τ),所以导致 Async SGD 会损伤模型的准确率,并且这种现象随着机器数量的增加会越来越严重。


因此 DC-ASGD 算法设计了一种可以补偿梯度延迟的方法,他们首先研究了正确梯度 g(wt+τ)和延迟梯度 g(wt)之间的关系,我们将 g(wt+τ)在 wt 处进行泰勒展开得到:



其中,∇g(wt)为梯度的梯度(loss fuction 的 Hessian 矩阵,因此梯度 g(wt)是 loss 函数关于参数 wt 的导数)。H(g(wt))为梯度的 Hessian 矩阵。那么如果将所有的高阶项都计算出来,就可以修正延迟梯度为准确梯度了。然而,由于余项拥有无穷项,并且计算量十分复杂,所以无法被准确计算。因此,可用上述公式中的一阶项进行延迟补偿:



但是上面的公式还是要计算∇g(wt)(参数的 Hessian 矩阵),但是在 DNN 中有上百万甚至更多的参数,计算和存储 Hessian 矩阵∇g(wt)很困难。因此,寻找 Hessian 矩阵的一个良好近似是能否补偿梯度延迟的关键。根据费舍尔信息矩阵的定义,梯度的外积矩阵是 Hessian 矩阵的一个渐近无偏估计:



其实,进一步可以写成:[公式] 。


又可知,在 DNN 中用 Hessian 矩阵的对角元素来近似表示 Hessian 矩阵,可在显著降低运算和存储复杂度的同时还可以保持算法精度,于是我们采用外积矩阵的 diag(G(wt))作为 Hessian 矩阵的近似。为了进一步降低近似的方差,我们使用一个(0,1]之间参数λ来对偏差和方差进行调节。另外由于:



综上,带有延迟补偿的异步随机梯度下降法(DC-ASGD):

具体算法

算法 1 中,worker m 从参数服务器中 pull 最新的模型参数 w,然后计算得到梯度 [公式] 后 push 到参数服务器中。


算法 2 中,当参数服务器接收到 worker m 算出来的梯度 [公式]后,利用梯度补偿公式算出下一个时间刻参数服务器正确的参数。如果参数服务器接受到 worker m 的 pull 参数请求时,将当前参数服务器的参数 wt 备份成 w_bak,并将 wt 发送给 worker m。


实验

在 CIFAR10 数据集和 ImageNet 数据集上对 DC-ASGD 算法进行了评估,实验结果显示:DC-ASGD 算法与 Async SGD 算法相比,在相同的时间内获得的模型准确率有显著的提升,并且也高于 Sync SGD,基本可以达到 SGD 相同的模型准确率。


本文转载自 Alex-zhai 知乎账号。


原文链接:https://zhuanlan.zhihu.com/p/80978479


2019-11-29 08:001687

评论

发布
暂无评论
发现更多内容

架构实战营 模块六 作业

脉醉

#架构实战营

模块六作业

seawolflin

架构实战营

架构训练营模块五作业

高铎

架构实战营

Java面试很难?啃完阿里老哥这套Java架构速成笔记,我都能拿30K

Java 编程 架构 面试 程序人生

Lua 入门到精通( 01 Lua 简介以及软件安装)《做一个脚本高手》

陈皮的JavaLib

lua Linux 运维 脚本语言 8月日更

05. AI就是会学习的计算机程序:从机器学习角度看AI

Databri_AI

人工智能

VR运动病要想好,FemTech少不了

脑极体

架构训练营模块六作业

高铎

架构实战营

网络攻防学习笔记 Day120

穿过生命散发芬芳

网络安全 8月日更

模块二作业

Geek_fc100d

架构实战营

模块六作业

河马先生

架构实战营

【iOS独立开发】基于iCloud构建游戏内排行榜

LabLawliet

ios 8月日更 独立开发

深入了解RocketMQ之NameServer

邱学喆

KVConfigManager RouteInfoManager

微信朋友圈高性能复杂度分析模拟

穿裤子的云

架构实战营

从命令执行到GetShell,适合新手学习

网络安全学海

网络安全 信息安全 渗透测试 WEB安全 安全漏洞

性能测试框架中实时QPS取样器实现

FunTester

性能测试 测试框架 压力测试 QPS 取样器

拆分电商系统为微服务

feitian

kafka核心技术与实战学习笔记(一)

追风少年

kafka

instanceof运算符的实质:Java继承链与JavaScript原型链

zhoulujun

JavaScript 原型链 instanceof constructor prototype

把知识玩起来:Ansible(一)快乐的入门

南冥

模块6 作业

Geek_35a345

极客时间---架构实战营2期---模块一作业

Dylan TANG

极客时间 架构实战营 作业一

模块六作业

VE

架构实战营

模块六

秀聪

架构训练营

模块6作业

柱林

模块6

Geek_ywh40v

架构实战营作业 M06

Shawn Liu

「架构实战营」

架构实战营第六模块作业

子豪sirius

架构实战营

❤ 超详细《软件测试全栈技能》思维导图详解 ❤(建议收藏) ​

程序员阿沐

程序员 软件测试 自动化测试 经验分享 技能图谱

架构实战营模块6作业

zlz

架构1期模块六作业

五只羊

架构实战营

ASGD_文化 & 方法_Alex-zhai_InfoQ精选文章