QCon 演讲火热征集中,快来分享技术实践与洞见! 了解详情
写点什么

简化 TensorFlow 和 Spark 互操作性问题:LinkedIn 开源 Spark-TFRecord

  • 2020-06-09
  • 本文字数:4121 字

    阅读完需:约 14 分钟

简化TensorFlow和Spark互操作性问题:LinkedIn开源Spark-TFRecord

TensorFlow 和 Apache Spark 的互操作问题是现实世界机器学习场景中常见的挑战。可以说,TensorFlow 是市场上最流行的深度学习框架,而 Apache Spark 仍然是被广泛采用的数据计算平台之一,从大型企业到初创公司都能见到它们的身影。很自然会有公司尝试将这两者结合起来。虽然有一些框架能够让 TensorFlow 适应 Spark,但互操作性挑战的根源性往往在于数据级别上。TFRecord 是 TensorFlow 的原生数据结构,在 Apache Spark 中并不完全受支持。最近,LinkedIn 工程师开源了 Spark-TFRecord,这是一个基于 TensorFlow TFRecord 的 Spark 新的原生数据源。


LinkedIn 决定着手解决这一问题,并不令人感到惊讶。这家互联网巨头长期以来一直是 Spark 技术的广泛采用者,并且也一直是 TensorFlow 和机器学习开源社区的积极贡献者。在内部,LinkedIn 工程团队经常尝试在 TensorFlow 的原生 TFRecord 格式和 Spark 的内部格式(如 Avro 或 Parquet)之间实现转换。Spark-TFRecord 项目的目标就是在 Spark 管道中提供 TFRecord 结构的原生功能。

先前的尝试

Spark-TFRecord 并非第一个尝试解决 Spark 和 TensorFlow 之间的数据互操作性挑战的项目。这一方面最受欢迎的项目是 Spark 的创建者 Databricks 推广的 Spark-Tensorflow-Connector。我们已经多次使用过 Spark-TensorFlow-Connector,并取得了不同程度的成功。从架构上讲,连接器是 TFRecord 格式到 Spark SQL DataFrames 的一种改编。了解了这一点,Spark-TensorFlow-Connector 在关系数据访问场景中工作非常有效,但在其他用例中却仍然非常有限,也就不足为奇了。


如果你仔细想想,TensorFlow 工作流的一个重要部分与磁盘 I/O 操作相关,而不是与数据库访问相关。在这些场景中,开发人员在使用 Spark-TensorFlow-Connector 时仍然需要编写相当多的代码。此外,当前版本的 Spark-TensorFlow-Connector 仍然缺少一些重要的功能,比如在 TensorFlow 计算中经常用到的 PartitionBy。最后,这个连接器更像是处理 Spark SQL Data Frames 中的 TensorFlow 记录的桥梁,而不是原生文件格式。


考虑到这些限制,LinkedIn 工程团队决定从一个略微不同的角度来解决 Spark-TensorFlow 的互操作性挑战。

Spark-TFRecord

Spark-TFRecord 是 Apache Spark 的原生 TensorFlow TFRecord。具体来说,Spark-TFRecord 提供了从 Apache Spark 读取 TFRecord 数据或向 Apache Spark 写入 TFRecord 数据的例程。与构建连接器来处理 TFRecord 结构不同的是,Spark-TFRecord 构建为原生 Spark 数据集,就像 Avro、JSON 或者 Parquet 一样。这意味着在 Spark-TFRecord 中,Spark 所有的 DataSet 和 DataFrame I/O 例程都是自动可用的。


一个值得探讨的明显问题是,为什么要构建一个新的数据结构,而不是简单地对开源 Spark-TensorFlow-Connector 进行版本控制呢?嗯,看起来,要使连接器适应磁盘 I/O 操作,需要从根本上进行重新设计。


LinkedIn 工程团队没有遵循这条路线,而是决定实现一个新的 Spark FileFormat 接口,该接口从根本上来说,是为了支持磁盘 I/O 操作而设计的。新街口将使 TFRecord 原生操作适应任何 Spark DataFrame。从架构上看,Spark-TFRecord 由一系列基本构建块组成,这些构建块抽象出了读/写和序列化/反序列化例程:


  • Schema Inferencer:这是离 Spark-TensorFlow-Connector 最近的组件。

  • TFRecord Reader:该组件读取 TFRecord 结构并将其传递给 TFRecord Deserializer。

  • TFRecord Writer:该组件从 TFRecord Serializer 接收 TFRecord 结构并将其写入磁盘。

  • TFRecord Deserializer:该组件将 TFRecord 转换为 Spark InternalRow 结构。



使用 LinkedIn 的 Spark-TFRecord 与其他 Spark 远程数据集并没有什么不同。开发人员只需包含 spark-tfrecord jar 库,并使用传统的 DataFrame API 读写 TFRecord 即可,如下代码所示:


import org.apache.commons.io.FileUtilsimport org.apache.spark.sql.{ DataFrame, Row }import org.apache.spark.sql.catalyst.expressions.GenericRowimport org.apache.spark.sql.types._val path = "test-output.tfrecord"val testRows: Array[Row] = Array(new GenericRow(Array[](11, 1, 23L, 10.0F, 14.0, List(1.0, 2.0), "r1")),new GenericRow(Array[](21, 2, 24L, 12.0F, 15.0, List(2.0, 2.0), "r2")))val schema = StructType(List(StructField("id", IntegerType),                             StructField("IntegerCol", IntegerType),                             StructField("LongCol", LongType),                             StructField("FloatCol", FloatType),                             StructField("DoubleCol", DoubleType),                             StructField("VectorCol", ArrayType(DoubleType, true)),                             StructField("StringCol", StringType)))val rdd = spark.sparkContext.parallelize(testRows)//Save DataFrame as TFRecordsval df: DataFrame = spark.createDataFrame(rdd, schema)df.write.format("tfrecord").option("recordType", "Example").save(path)//Read TFRecords into DataFrame.//The DataFrame schema is inferred from the TFRecords if no custom schema is provided.val importedDf1: DataFrame = spark.read.format("tfrecord").option("recordType", "Example").load(path)importedDf1.show()//Read TFRecords into DataFrame using custom schemaval importedDf2: DataFrame = spark.read.format("tfrecord").schema(schema).load(path)importedDf2.show()
复制代码


对大多数组织来说,Spark 和 TensorFlow 这样的深度学习框架之间的互操作性可能仍然是一个具有挑战性的领域。然而,像 LinkedIn 的 Spark-TFRecord 这样经过大规模测试的项目,无疑有助于简化这两种技术之间的桥梁,而这两种技术对现代机器学习架构来说都是必不可少的。


作者介绍:


Jesus Rodriguez,Invector Labs 首席科学家、执行合伙人,在 IntoTheBlock 任 CTO。同时也是天使投资人、作家、多家软件公司董事会成员。


原文链接:


https://towardsdatascience.com/linkedin-open-sources-a-small-component-to-simplify-the-tensorflow-spark-interoperability-fbf0b65ae113


2020-06-09 09:004612

评论

发布
暂无评论
发现更多内容

SAP UI5 ObjectPageLayout 控件使用方法分享

汪子熙

前端开发 Fiori SAP UI5 ui5 7月月更

基于昇腾AI丨高新兴推出城市道路车辆二次识别解决方案,达到业界领先水平

科技热闻

基于昇腾AI丨爱笔智能推出银行网点数字化解决方案,实现从总部到网点的信息数字化全覆盖

科技热闻

【LeetCode】判断矩阵是否是一个 X 矩阵Java题解

Albert

LeetCode 7月月更

Node の MongoDB Driver

空城机

mongodb Node 7月月更

Vue.js基础环境的搭建以及简单使用Element-ui

是乃德也是Ned

7月月更

蚁群算法(实例帮助理解)

秃头小苏

蚁群算法 7月月更

OpenFeign

急需上岸的小谢

7月月更

ORACLE进阶(三)数据字典详解

No Silver Bullet

oracle 7月月更 数据字典

容易混淆的基本概念 成员变量 局部变量 全局变量

NewBoy

前端 移动端 iOS 知识体系 7月月更

Qemu Linux

贾献华

7月日更 7月月更

微信小程序触底加载与下拉刷新的实现

猪痞恶霸

小程序 前端 7月月更

Qt实现json解析

小肉球

7月月更

Web3基金会「Grant计划」赋能开发者,盘点四大成功项目

One Block Community

区块链+

算法入门很简单:链表题套路及精选题目

宇宙之一粟

链表 7月月更

线上故障突突突?如何紧急诊断、排查与恢复

阿里巴巴云原生

阿里云 微服务 云原生 故障恢复 诊断

LLVM之父Chris Lattner:为什么我们要重建AI基础设施软件

OneFlow

人工智能 软件系统

CSS动画篇之炫酷时钟之时钟墙

南城FE

CSS 前端 动画 时钟 7月月更

RingCentral Android启动优化实践

RingCentral铃盛

android 启动流程

5G NR系统架构

柒号华仔

5G 网络 7月月更

什么是数据治理?为何华为愿意200万年薪聘数据治理专家?

雨果

数据治理 DaaS数据即服务

官宣!第三届云原生编程挑战赛正式启动!

阿里巴巴云原生

阿里云 Serverless 边缘计算 ACK 云原生编程挑战赛

基于STM32+华为云IOT设计的智能防盗单车锁

DS小龙哥

7月月更

非技术部门,如何参与 DevOps?

飞算JavaAI开发助手

基于昇腾AI丨以萨技术推出视频图像全目标结构化解决方案,达到业界领先水平

科技热闻

Java实现单例模式

lambochen

单例模式

如何用一个插件解决 Serverless 灰度发布难题?

阿里巴巴云原生

阿里云 Serverless 云原生 插件 灰度发布

Lepton 无损压缩原理及性能分析

vivo互联网技术

对象存储 无损压缩 lepton 图片压缩

OpenHarmony资源管理详解

坚果

HarmonyOS OpenHarmony 6月月更

LeetCode-145. 二叉树的后序遍历(java)

bug菌

Leet Code 7月月更

SpringBoot Webflux解析

Ethan

简化TensorFlow和Spark互操作性问题:LinkedIn开源Spark-TFRecord_AICon_Jesus Rodriguez_InfoQ精选文章