限时领|《AI 百问百答》专栏课+实体书(包邮)! 了解详情
写点什么

Amazon Neptune – 完全托管的图形数据库服务

  • 2019-11-05
  • 本文字数:2755 字

    阅读完需:约 9 分钟

Amazon Neptune – 完全托管的图形数据库服务

在我们用来支持现代生活的所有数据结构和算法中,图形不断改变着世界。各企业不断产生和获取关系复杂的丰富数据。然而,开发人员仍然不得不在传统数据库中对这些复杂关系进行建模。这导致查询极为复杂,并且成本高昂,随着关系的增加,性能也会不断下降。我们希望能简化这些越来越复杂的新式数据集、关系和模式的处理。

欢迎 Amazon Neptune

今天,我们要发布 Amazon Neptune 有限预览版,这是一个快速可靠的图形数据库服务,可供客户轻松洞悉高度连接的数据集之间的关系。Amazon Neptune 的核心是专门构建的高性能图形数据库引擎,它进行了优化,可存储数十亿关系并将图形查询延迟减至毫秒级。Amazon Neptune 作为完全托管的数据库提供,让客户能够腾出手来集中精力开发其应用程序,而不用忙于执行枯燥的重复性操作,如维护、修补、备份和恢复。该服务支持快速故障转移、时间点恢复以及多可用区部署,从而实现高可用性。它支持多达 15 个只读副本,您可以将查询吞吐量扩展到每秒数十万个查询。Amazon Neptune 在 Amazon Virtual Private Cloud 内运行,因此您可以加密静态数据,可完全控制传输中数据和静态数据的完整性。



这项服务有很多有趣的功能,不过可能很多人还不熟悉图形数据库,因此我们首先介绍一下概念。

图形数据库

图形数据库用于存储顶点 (节点) 和边缘 (关系或连接),这两种元素都可以键值对的形式存储其属性。对于连接的上下文关系驱动数据,图形数据库很有用。一些典型的应用包括社交媒体网络、推荐引擎、驾车路线、物流、诊断、欺诈检测以及基因测序。


Amazon Neptune 支持两种开放式图形描述和查询标准:


  • 使用 Gremlin 查询的 Apache TinkerPop3 样式属性图。Gremlin 是一种图形遍历语言,在这种语言中,查询是由沿着边缘到节点的离散步骤组成的遍历。通过用于 TinkerPop 的现有工具和客户端,可以快速开始使用 Neptune。

  • 使用 SPARQL 查询的资源描述框架 (RDF)。SPARQL 是一种声明式语言,它基于 W3C 的 Semantic Web 标准。它遵从“主->谓->宾”模型。具体地说,Neptune 支持以下标准:RDF 1.1、SPARQL Query 1.1、SPARQL Update 1.1 和 SPARQL Protocol 1.1。


如果现有应用程序可使用 SPARQL 或 TinkerPop,则只需更新这些应用程序所连接的终端节点,就可以开始使用 Neptune。


我们介绍一下如何启动 Amazon Neptune。

启动 Amazon Neptune

首先导航到 Neptune 控制台,然后单击“Launch Neptune”打开启动向导。



在第一个屏幕上,只需命名实例和选择实例类型。接下来配置高级选项。如果您以前启动过基于实例的 AWS 数据库服务,如 Amazon Relational Database Service (RDS)Amazon ElastiCache,现在的很多步骤您可能会觉得很熟悉。



Amazon Neptune 在 VPC 内安全运行,可以创建它自己的安全组,您可以添加 EC2 实例以便访问。



现在,我们可以配置其他一些选项,如参数组、端口和群集名称。



在下一个屏幕上,我们可以启用基于 KMS 的静态加密、故障转移优先级和备份保留时间。



与 RDS 类似,数据库维护可由该服务处理。


实例配置完毕后,您可以在群集的“Details”页面上找到连接终端节点。在我这个例子中是 triton.cae1ofmxxhy7.us-east-1.rds.amazonaws.com


使用 Amazon Neptune

如上所述,Amazon Neptune 可以使用两个不同的查询引擎。


要连接到 Gremlin 终端节点,可通过 /gremlin 使用终端节点执行某些操作,如:


Bash


curl -X POST -d '{"gremlin":"g.V()"}' https://your-neptune-endpoint:8182/gremlin
复制代码


同样,可以通过 /sparql 连接到 SPARQL 终端节点


Bash


curl -G https://your-neptune-endpoint:8182/sparql --data-urlencode 'query=select ?s ?p ?o where {?s ?p ?o}'
复制代码


我们需要先填充数据库,然后才能查询数据。假设我们对 AWS re:Invent 建模,使用批量加载 API 插入一些数据。


对于属性图,Neptune 支持使用存储在 Amazon Simple Storage Service (S3) 中的 CSV 来加载节点、节点属性、边缘和边缘属性。


典型的顶点 CSV 看起来是这样的:


~label,name,email,title,~idAttendee,George Harrison,george@thebeatles.com,Lead Guitarist,1Attendee,John Lennon,john@thebeatles.com,Guitarist,2Attendee,Paul McCartney,paul@thebeatles.com,Lead Vocalist,3
复制代码


边缘 CSV 看起来是这样的:


~label,~from,~to ,~idattends,2,ARC307,attends22attends,3,SRV422,attends27
复制代码


现在将一个结构类似的 CSV 加载到 Neptune 中,运行如下代码:


Bash


curl -H 'Content-Type: application/json' \https://neptune-endpoint:8182/loader -d '{    "source": "s3://super-secret-reinvent-data/vertex.csv",    "format": "csv",    "region": "us-east-1",    "accessKey": "AKIATHESEARENOTREAL",    "secretKey": "ThEseARE+AlsoNotRea1K3YSl0l1234coVFefE12"  }'
复制代码


将返回:


Json


{    "status" : "200 OK",    "payload" : {        "loadId" : "2cafaa88-5cce-43c9-89cd-c1e68f4d0f53"    }}
复制代码


我使用该返回结果,查询加载状态: curl https://neptune-endpoint:8182/loader/2cafaa88-5cce-43c9-89cd-c1e68f4d0f53


Json


{    "status" : "200 OK",    "payload" : {        "feedCount" : [{"LOAD_COMPLETED" : 1}],        "overallStatus" : {            "fullUri" : "s3://super-secret-reinvent-data/stuff.csv",            "runNumber" : 1,            "retryNumber" : 0,            "status" : "LOAD_COMPLETED",            "totalTimeSpent" : 1,            "totalRecords" : 987,            "totalDuplicates" : 0,            "parsingErrors" : 0,            "datatypeMismatchErrors" : 0,            "insertErrors" : 0        }    }}
复制代码


对于此数据序列化格式,我对各边缘重复执行此加载过程。


对于 RDF,Neptune 支持四种序列化:Turtle、N-Triples、N-Quads 和 RDF/XML。我可以通过同一个加载 API 加载以上所有对象。


现在,我的数据库中已经有数据了,可以运行查询。我们用 Gremlin 以图形遍历形式编写查询。我是 Paul McCartney 的忠实粉丝,我需要查找他将举行的所有演唱会:


g.V().has("name","Paul McCartney").out("attends").id()


这样就定义了一个图形遍历,它查找属性“name”的值为“Paul McCartney”的所有节点 (只有一个!)。接下来,它从该节点沿所有类型为“attends”的边缘查找,获取结果节点的 ID。


==>ENT332==>SRV422==>DVC201==>GPSBUS216==>ENT323
复制代码


Paul 看起来很忙。


希望这个例子能让您简要了解图形数据库的功能。图形数据库为很多客户带来了各种全新可能,而 Amazon Neptune 让大规模存储和查询数据变得更简单。我很高兴看到我们的客户构建出精彩的新产品。


本文转载自 AWS 技术博客。


原文链接:


https://amazonaws-china.com/cn/blogs/china/amazon-neptune-a-fully-managed-graph-database-service/


2019-11-05 08:00940

评论

发布
暂无评论
发现更多内容

【YashanDB数据库】YAS-02032 column type is incompatible with referenced column type

YashanDB

yashandb 崖山数据库 崖山DB

事业-最佳实践-个人-心态调整

南山

EZ先享官海外溯源之旅让马粉再一次为马自达着迷

极客天地

观测云对接 OpenTelemetry 最佳实践

观测云

OpenTelemetry

中小企业异地组网方案优化——SD-WAN的应用

Ogcloud

SD-WAN SD-WAN组网 SD-WAN服务商 异地组网 SDWAN

事业-最佳实践-个人-高强度调节

南山

高强度调节 调整

晨曦抵校,夜幕归家:边缘AI守护,全程体验无忧

E科讯

Web3 游戏周报(8.04 - 8.10)

Footprint Analytics

链游

【YashanDB数据库】YAS-02079 archive log mode must be enabled when database is in replication mode

YashanDB

yashandb 崖山数据库

AI驱动SEO排名优化使工作更省力

幂简集成

API SEO SEO工具

5 大场景上手通义灵码企业知识库 RAG

阿里巴巴云原生

阿里云 云原生 通义灵码

在 Django 上实现定时任务的指南

我再BUG界嘎嘎乱杀

Python django 编程 爬虫 后端

流程图框架 - LogicFlow 2.0 发布啦 🎉🎉🎉

R0ger_OuO

开源软件 BPMN 可视化数据 流程图绘制 LogicFlow

事业-最佳实践-个人-人际关系维护

南山

人际关系 维护关系

OpenTiny CCF开源创新大赛赛事指南来啦,助力你赢取10W赛事奖金

华为云开发者联盟

开源 低代码 OpenTiny 企业号 8 月 PK 榜 2024企业号8月pk

SaaS应用加速问题怎么解决?

Ogcloud

SD-WAN SD-WAN组网 SD-WAN服务商 SaaS应用加速 SaaS加速

解析静态IP的应用场景与优势

IPIDEA全球HTTP

静态IP

支持S3协议的S3cmd工具简单使用

天翼云开发者社区

云计算 S3 cmd

爱在七夕,巧手编织浪漫云端 —— 用1Panel为她的世界添一抹不凡

coxi_vv

七夕 建站 halo 1Panel 恋爱代码

一文带您了解如何降低对象存储成本

天翼云开发者社区

对象存储 天翼云

【YashanDB数据库】YAS-02024 lock wait timeout, wait time 0 milliseconds

YashanDB

yashandb 崖山数据库

Vue Vine:带给你全新的 Vue 书写体验!

OpenTiny社区

开源 Vue 前端 TinyVue

云高性能计算平台 CHPC 让企业的传统 HPC 玩出新花样

Baidu AICLOUD

HPC 高性能计算

99元做自己网站的管理员

coxi_vv

开源 建站 halo 1Panel 飞致云

5 大场景上手通义灵码企业知识库 RAG

阿里云云效

阿里云 云原生 通义灵码

天下拍-为您提供拍卖业务的一揽子解决方案

至存网络

竞价实例 拍卖 国有企业增资

Amazon Neptune – 完全托管的图形数据库服务_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章