HarmonyOS开发者限时福利来啦!最高10w+现金激励等你拿~ 了解详情
写点什么

阿里:Behavior Sequence Transformer 解读

  • 2019-12-02
  • 本文字数:1663 字

    阅读完需:约 5 分钟

阿里:Behavior Sequence Transformer 解读

背景和介绍

现在深度学习已经广泛应用到了各种 CTR 预估模型中,但是大都数模型的输入只是 concat 不同的特征,而忽视了用户历史行为本身的序列特征。比如一个用户很有可能买了苹果手机后,会买手机套,买了裤子之后会选择继续买个配套的鞋子。而之前一些模型比如 wide&deep,就没有利用用户行为历史序列中的 order information。DIN 模型使用注意力机制来捕获目标商品与用户先前行为序列中商品之间的相似性,但仍然未考虑用户行为序列背后的序列性质。


因此为了解决上述问题,本文尝试将 NLP 领域中大放异彩的 Transformer 模型来做推荐任务。具体:使用 self-attention 模块来学习用户行为历史序列中各个 item 的序列信息。

模型

  • 问题建模:给定一个用户 u 的行为序列:S(u) = {v1,v2, …,vn },学习一个函数 F 用于预测用户 u 点击 item vt 的概率。其它特征包括:user profile, context, item 和 cross features,如下图所示



  • 模型结构:

  • 1.Embedding Layer:左侧部分通过 embedding 层将所有的 other features 映射成固定维度的向量,然后 concat 起来。另外,该模型也将行为序列中的每个 Item(包括目标 Item)通过相同的 embedding 层映射成低维度的向量。这里需要注意的是,每个 Item 通过两部分来表示:“序列 item 特征”(红色部分)和“位置特征”(深蓝色),其中,“序列 item 特征”包括 item_id 和 category_id(item 通过包括上百个特征,但是 item-id 和 category_id 两个特征对于 performance 来说就已经够了)。位置特征用来刻画用户历史行为序列中的顺序信息,文中将“位置”作为中每个 item 的另一个输入特征,然后将其投射为低维向量。第 i 个位置的位置特征计算方式为 pos(vi)=t(vt)-t(vi),其中,t(vt) 表示推荐的时间戳,t(vi) 表示用户点击商品 vi 时的时间戳。

  • 2.Transformer layer:对于每个 item 抽取了一个更深层次的 representation,用于捕捉该 item 和历史行为序列中的其他 item 的关系。

  • Self-attention:Transformer 层中的 multi-head attention 模块输出:

  • 其中 headi 为:



self-attention 的计算公式为:



  • Point-wise Feed-Forward Network:目的是增加非线性。在 self-attention 和 FFN 中都使用了 dropout 和 LeakyReLU,最终 self-attention 和 FFN 的输出为:

  • Stacking the self-attention block:上面的两步操作被称为一个 self-attention 单元。为了抽取出 item 序列中更加复杂的潜在关联特征,该模型堆叠了几层 self-attention 单元:


  1. MLP layers and Loss function: 将所有的 embedding 进行拼接,输入到三层的神经网络中,并最终通过 sigmoid 函数转换为 0-1 之间的值,代表用户点击目标商品的概率。loss 函数:


实验结果

其中,b 表示 Transformer 的 block 堆叠的层数,论文里实验了 1 层、2 层和 3 层的效果,最终 1 层的效果最好。

总结

DIN、DIEN、DSIN 和本文 BST 模型的区别和联系


DIN 模型使用注意力机制来捕获目标商品与用户先前行为序列中商品之间的相似性,但是未考虑用户行为序列背后的序列性质,并且未捕捉用户兴趣的动态变化性。


DIEN 主要解决 DIN 无法捕捉用户兴趣的动态变化性的缺点,提出了兴趣抽取层 Interest Extractor Layer、兴趣进化层 Interest Evolution Layer。


DSIN 针对 DIN 和 DIEN 没考虑用户历史行为中的会话信息,因为在每个会话中的行为是相近的,而在不同会话之间差别是很大的。DSIN 主要是在 session 层面上来利用用户的历史行为序列信息。


BST 模型通过 Transformer 模型来捕捉用户历史序列中各个 item 的关联特征,并且通过加入待推荐的商品 item,也可抽取出行为序列中商品与待推荐商品之间的相关性。


参考文献:


Behavior Sequence Transformer for E-commerce Recommendation in Alibaba


https://www.jianshu.com/p/caa2d87cb78c


Deep Interest Network for Click-Through Rate Prediction


Deep Interest Evolution Network for Click-Through Rate Prediction


Deep Session Interest Network for Click-Through Rate Prediction


本文转载自 Alex-zhai 知乎账号。


原文链接:https://zhuanlan.zhihu.com/p/72018969


2019-12-02 16:221282

评论

发布
暂无评论
发现更多内容

3分钟初识网络功能虚拟化NFV

穿过生命散发芬芳

6月月更 NFV

跨境电商如何通过打好数据底座,实现低成本稳步增长

OceanBase 数据库

跨境电商 oceanbase

RPA能否创造新业态?如何优化组织结构?如何助力疫情中的企业?

王吉伟频道

人工智能 RPA 机器人流程自动化 机器人开发 爱死机

华为云AppCube零门槛搭建5G消息服务号

乌龟哥哥

6月月更

AQUANEE尚处初期,已或币安等顶尖机构青睐

西柚子

架构设计-外包学生管理系统

Roy

架构实战营

架构实战营模块 3 作业

Naoki

架构实战营

应用实践 | 物易云通基于 Apache Doris 的实时数据仓库建设

SelectDB

数据库 架构 最佳实践 Doris MySQL 数据库

不止于观测|阿里云可观测技术峰会正式上线

阿里巴巴云原生

阿里云 开源 云原生 可观测峰会 行业实践

控制并发线程数的Semaphore

急需上岸的小谢

6月月更

Redux之利用 distinct 属性进行性能优化

岛上码农

flutter ios 安卓开发 跨平台应用 6月月更

AQUANEE尚处初期,已获币安等顶尖机构青睐

BlockChain先知

python偏函数

红毛丹

Python 6月月更

架构实战营第三模块课后作业

Geek_53787a

课后总结

《阅读的方法》:怎么找阅读的乐趣?

郭明

读书笔记

关于volitile相关知识

北洋

6月月更

选择数字资产托管人时,要问的 6 个问题

BlockChain先知

leetcode 126. Word Ladder II 单词接龙 II(困难)

okokabcd

LeetCode 搜索 算法与数据结构

Hoo研究院 | OlympusDao调研报告

区块链前沿News

DAO Hoo 算法稳定

Vue 组件如何在设置 Props

devpoint

Vue Vue3 InfoQ极客传媒15周年庆

学生管理系统详细架构

intelamd

数据库每日一题---第6天:删除重复的电子邮箱

知心宝贝

数据库 程序员 前端 后端 6月月更

java面向对象之多态(向上转型和向下转型)

写代码两年半

面向对象 javase 多态 6月月更

在 Vue3 + Element Plus 中生成动态表格,动态修改表格,多级表头,合并单元格

蒋川

低代码 Vue3 组件 表格 Element Plus

Spring Data JPA 极速入门

Geek_rze78a

spring data 6月月更

1.4 宏观/中观/微观架构(连载)

凌晞

架构 架构设计 架构设计实战

API 网关 Apache APISIX 在 Amazon Graviton3 上的安装与性能测试

亚马逊云科技 (Amazon Web Services)

apisix;Tech 专栏

在这些根技术里,读懂华为的“三观”

脑极体

OpenKruise v1.2:新增 PersistentPodState 实现有状态 Pod 拓扑固定与 IP 复用

阿里巴巴云原生

阿里云 云原生 开源项目

数据结构与算法之时间复杂度与空间复杂度

未见花闻

6月月更

阿里:Behavior Sequence Transformer 解读_语言 & 开发_Alex-zhai_InfoQ精选文章