写点什么

阿里:Behavior Sequence Transformer 解读

  • 2019-12-02
  • 本文字数:1663 字

    阅读完需:约 5 分钟

阿里:Behavior Sequence Transformer 解读

背景和介绍

现在深度学习已经广泛应用到了各种 CTR 预估模型中,但是大都数模型的输入只是 concat 不同的特征,而忽视了用户历史行为本身的序列特征。比如一个用户很有可能买了苹果手机后,会买手机套,买了裤子之后会选择继续买个配套的鞋子。而之前一些模型比如 wide&deep,就没有利用用户行为历史序列中的 order information。DIN 模型使用注意力机制来捕获目标商品与用户先前行为序列中商品之间的相似性,但仍然未考虑用户行为序列背后的序列性质。


因此为了解决上述问题,本文尝试将 NLP 领域中大放异彩的 Transformer 模型来做推荐任务。具体:使用 self-attention 模块来学习用户行为历史序列中各个 item 的序列信息。

模型

  • 问题建模:给定一个用户 u 的行为序列:S(u) = {v1,v2, …,vn },学习一个函数 F 用于预测用户 u 点击 item vt 的概率。其它特征包括:user profile, context, item 和 cross features,如下图所示



  • 模型结构:

  • 1.Embedding Layer:左侧部分通过 embedding 层将所有的 other features 映射成固定维度的向量,然后 concat 起来。另外,该模型也将行为序列中的每个 Item(包括目标 Item)通过相同的 embedding 层映射成低维度的向量。这里需要注意的是,每个 Item 通过两部分来表示:“序列 item 特征”(红色部分)和“位置特征”(深蓝色),其中,“序列 item 特征”包括 item_id 和 category_id(item 通过包括上百个特征,但是 item-id 和 category_id 两个特征对于 performance 来说就已经够了)。位置特征用来刻画用户历史行为序列中的顺序信息,文中将“位置”作为中每个 item 的另一个输入特征,然后将其投射为低维向量。第 i 个位置的位置特征计算方式为 pos(vi)=t(vt)-t(vi),其中,t(vt) 表示推荐的时间戳,t(vi) 表示用户点击商品 vi 时的时间戳。

  • 2.Transformer layer:对于每个 item 抽取了一个更深层次的 representation,用于捕捉该 item 和历史行为序列中的其他 item 的关系。

  • Self-attention:Transformer 层中的 multi-head attention 模块输出:

  • 其中 headi 为:



self-attention 的计算公式为:



  • Point-wise Feed-Forward Network:目的是增加非线性。在 self-attention 和 FFN 中都使用了 dropout 和 LeakyReLU,最终 self-attention 和 FFN 的输出为:

  • Stacking the self-attention block:上面的两步操作被称为一个 self-attention 单元。为了抽取出 item 序列中更加复杂的潜在关联特征,该模型堆叠了几层 self-attention 单元:


  1. MLP layers and Loss function: 将所有的 embedding 进行拼接,输入到三层的神经网络中,并最终通过 sigmoid 函数转换为 0-1 之间的值,代表用户点击目标商品的概率。loss 函数:


实验结果

其中,b 表示 Transformer 的 block 堆叠的层数,论文里实验了 1 层、2 层和 3 层的效果,最终 1 层的效果最好。

总结

DIN、DIEN、DSIN 和本文 BST 模型的区别和联系


DIN 模型使用注意力机制来捕获目标商品与用户先前行为序列中商品之间的相似性,但是未考虑用户行为序列背后的序列性质,并且未捕捉用户兴趣的动态变化性。


DIEN 主要解决 DIN 无法捕捉用户兴趣的动态变化性的缺点,提出了兴趣抽取层 Interest Extractor Layer、兴趣进化层 Interest Evolution Layer。


DSIN 针对 DIN 和 DIEN 没考虑用户历史行为中的会话信息,因为在每个会话中的行为是相近的,而在不同会话之间差别是很大的。DSIN 主要是在 session 层面上来利用用户的历史行为序列信息。


BST 模型通过 Transformer 模型来捕捉用户历史序列中各个 item 的关联特征,并且通过加入待推荐的商品 item,也可抽取出行为序列中商品与待推荐商品之间的相关性。


参考文献:


Behavior Sequence Transformer for E-commerce Recommendation in Alibaba


https://www.jianshu.com/p/caa2d87cb78c


Deep Interest Network for Click-Through Rate Prediction


Deep Interest Evolution Network for Click-Through Rate Prediction


Deep Session Interest Network for Click-Through Rate Prediction


本文转载自 Alex-zhai 知乎账号。


原文链接:https://zhuanlan.zhihu.com/p/72018969


2019-12-02 16:221415

评论

发布
暂无评论
发现更多内容

明道云HAP成功通过了AWS 的 FTR 认证

明道云

Intel HDSLB 高性能四层负载均衡器 — 快速入门和应用场景

云物互联

云计算 负载均衡 网络

PingCAP 黄东旭参与 CCF 秀湖会议,共探开源教育未来

PingCAP

数据库 分布式 TiDB

多点 Dmall x TiDB:出海多云多活架构下的 TiDB 运维实战

PingCAP

数据库 分布式 TiDB 多云

淘宝开放平台API接口:淘宝店铺订单列表接口丨淘宝店铺订单详情接口丨淘宝店铺订单物流接口

tbapi

淘宝店铺订单接口 淘宝店铺订单详情接口 淘宝店铺订单物流接口

Pandabuy VS Wegobuy 淘宝代购系统

tbapi

淘宝代购系统 Pandabuy wegobuy

Pencils Protocol Valut 板块:实现杠杆挖矿收益&一鱼多吃

石头财经

大模型一体机是在“卖盒子”吗?

脑极体

AI

工作卷,是主动选择还是迫于无奈?

王中阳Go

golang 微服务 面试题 大厂面经 Go进阶

线上展厅是什么?和传统展厅相比有什么区别和优势?

点量实时云渲染

云展厅 3D展厅 线上展厅

一文读懂 Pencil 积分,打开 Pencils Protocol 生态权益大门

股市老人

OpenHarmony公开课 - 开发者手机OTA升级适配

Laval小助手

一文读懂Pencils Protocol Valut的收益叙事:一鱼多吃

股市老人

一文读懂Pencils Protocol Valut的收益叙事:一鱼多吃

加密眼界

一文读懂Pencils Protocol Valut的收益叙事:一鱼多吃

BlockChain先知

鸿蒙HarmonyOS实战-ArkUI组件(Canvas)

蜀道山

鸿蒙 架构 HarmonyOS 鸿蒙系统 鸿蒙 Ability

鸿蒙HarmonyOS实战-ArkUI动画(布局更新动画)

蜀道山

鸿蒙 架构 HarmonyOS 鸿蒙系统 鸿蒙 Ability

银行核心背后的落地工程体系丨混沌测试的场景设计与实战演练

PingCAP

数据库 开源 分布式 TiDB

什么是正向控制,反向控制?

玄兴梦影

正向控制 反向控制

一文读懂Pencils Protocol Valut的收益叙事:一鱼多吃

大瞿科技

阿里:Behavior Sequence Transformer 解读_语言 & 开发_Alex-zhai_InfoQ精选文章