写点什么

如何使用 Neo4J 和 Transformer 构建知识图谱

  • 2022-03-21
  • 本文字数:4765 字

    阅读完需:约 16 分钟

如何使用Neo4J和Transformer构建知识图谱

本文最初发布于 Towards Data Science。


图片由作者提供:Neo4j中的知识图谱

简介


在这篇文章中,我将展示如何使用经过优化的、基于转换器的命名实体识别(NER)以及 spaCy 的关系提取模型,基于职位描述创建一个知识图谱。这里介绍的方法可以应用于其他任何领域,如生物医学、金融、医疗保健等。


以下是我们要采取的步骤:


  • Google Colab 中加载优化后的转换器 NER 和 spaCy 关系提取模型;

  • 创建一个 Neo4j Sandbox,并添加实体和关系;

  • 查询图,找出与目标简历匹配度最高的职位,找出三个最受欢迎的技能和共现率最高的技能。


要了解关于如何使用 UBIAI 生成训练数据以及优化 NER 和关系提取模型的更多信息,请查看以下文章。



职位描述数据集可以从Kaggle获取。


在本文结束的时候,我们就可以创建出如下所示的知识图谱。


图片由作者提供:职位描述的知识图谱

命名实体和关系提取


首先,我们加载 NER 和关系模型的依赖关系,以及之前优化过的 NER 模型本身,以提取技能、学历、专业和工作年限:


!pip install -U pip setuptools wheel!python -m spaCy project clone tutorials/rel_component!pip install -U spaCy-nightly --pre!!pip install -U spaCy transformersimport spaCy#安装完依赖项后重启运行时nlp = spaCy.load("[PATH_TO_THE_MODEL]/model-best")
复制代码


加载我们想从中提取实体和关系的职位数据集:


import pandas as pddef get_all_documents():df = pd.read_csv("/content/drive/MyDrive/job_DB1_1_29.csv",sep='"',header=None)documents = []for index,row in df.iterrows():documents.append(str(row[0]))return documentsdocuments = get_all_documents()documents = documents[:]
复制代码


从职位数据集中提取实体:


import hashlibdef extract_ents(documents,nlp):  docs = list()  for doc in nlp.pipe(documents, disable=["tagger", "parser"]):      dictionary=dict.fromkeys(["text", "annotations"])      dictionary["text"]= str(doc)      dictionary['text_sha256'] =  hashlib.sha256(dictionary["text"].encode('utf-8')).hexdigest()      annotations=[]
for e in doc.ents: ent_id = hashlib.sha256(str(e.text).encode('utf-8')).hexdigest() ent = {"start":e.start_char,"end":e.end_char, "label":e.label_,"label_upper":e.label_.upper(),"text":e.text,"id":ent_id} if e.label_ == "EXPERIENCE": ent["years"] = int(e.text[0]) annotations.append(ent)
dictionary["annotations"] = annotations docs.append(dictionary) #print(annotations) return docsparsed_ents = extract_ents(documents,nlp)
复制代码


在将实体提供给关系提取模型之前,我们可以看下提取出的部分实体:


[('stock market analysis', 'SKILLS'),('private investor', 'SKILLS'), ('C++', 'SKILLS'), ('Investment Software', 'SKILLS'),('MS Windows', 'SKILLS'), ('web development', 'SKILLS'), ('Computer Science', 'DIPLOMA_MAJOR'),('AI', 'SKILLS'),('software development', 'SKILLS'),('coding', 'SKILLS'),('C', 'SKILLS'), ('C++', 'SKILLS'),('Visual Studio', 'SKILLS'),('2 years', 'EXPERIENCE'), ('C/C++ development', 'SKILLS'), ('data compression', 'SKILLS'),('financial markets', 'SKILLS'),('financial calculation', 'SKILLS'),('GUI design', 'SKILLS'),('Windows development', 'SKILLS'), ('MFC', 'SKILLS'), ('Win', 'SKILLS'),('HTTP', 'SKILLS'),('TCP/IP', 'SKILLS'),('sockets', 'SKILLS'), ('network programming', 'SKILLS'), ('System administration', 'SKILLS')]
复制代码


我们现在准备好预测关系了;首先加载关系提取模型,务必将目录改为 rel_component/scripts 以便可以访问关系模型的所有必要脚本。


cd rel_component/
复制代码


import randomimport typerfrom pathlib import Pathimport spaCyfrom spaCy.tokens import DocBin, Docfrom spaCy.training.example import Example#使factory生效from rel_pipe import make_relation_extractor, score_relations#使config生效from rel_model import create_relation_model, create_classification_layer, create_instances, create_tensors#安装完依赖项后重启运行时nlp2 = spaCy.load("/content/drive/MyDrive/training_rel_roberta/model-best")def extract_relations(documents,nlp,nlp2): predicted_rels = list()for doc in nlp.pipe(documents, disable=["tagger", "parser"]): source_hash = hashlib.sha256(doc.text.encode('utf-8')).hexdigest()for name, proc in nlp2.pipeline: doc = proc(doc)for value, rel_dict in doc._.rel.items():for e in doc.ents:for b in doc.ents:if e.start == value[0] and b.start == value[1]: max_key = max(rel_dict, key=rel_dict. get)#print(max_key) e_id = hashlib.sha256(str(e).encode('utf-8')).hexdigest() b_id = hashlib.sha256(str(b).encode('utf-8')).hexdigest()if rel_dict[max_key] >=0.9 :#print(f" entities: {e.text, b.text} --> predicted relation: {rel_dict}") predicted_rels.append({'head': e_id, 'tail': b_id, 'type':max_key, 'source': source_hash})return predicted_relspredicted_rels = extract_relations(documents,nlp,nlp2)
复制代码


Predicted relations:  entities: ('5+ years', 'software engineering') --> predicted relation: {'DEGREE_IN': 9.5471655e-08, 'EXPERIENCE_IN': 0.9967771} entities: ('5+ years', 'technical management') --> predicted relation: {'DEGREE_IN': 1.1285037e-07, 'EXPERIENCE_IN': 0.9961034}  entities: ('5+ years', 'designing') --> predicted relation:{'DEGREE_IN': 1.3603304e-08, 'EXPERIENCE_IN': 0.9989103}  entities: ('4+ years', 'performance management') --> predicted relation: {'DEGREE_IN': 6.748373e-08, 'EXPERIENCE_IN': 0.92884386}
复制代码

Neo4J


现在,我们可以加载职位数据集,并将数据提取到 Neo4j 数据库中了。

首先,我们创建一个空的Neo4j Sandbox,并添加连接信息,如下所示:


documents = get_all_documents()documents = documents[:]parsed_ents = extract_ents(documents,nlp)predicted_rels = extract_relations(documents,nlp,nlp2)#neo4j的基础查询功能from neo4j import GraphDatabaseimport pandas as pdhost = 'bolt://[your_host_address]'user = 'neo4j'password = '[your_password]'driver = GraphDatabase.driver(host,auth=(user, password))def neo4j_query(query, params=None):with driver.session() as session: result = session.run(query, params)return pd.DataFrame([r.values() for r in result], columns=result.keys())
复制代码


接下来,我们将文档、实体和关系添加到知识图谱中。注意,我们需要从实体 EXPERIENCE 的 name 中提取出整数年限,并将其作为一个属性存储起来。

#清空当前的Neo4j Sandbox db (删除所有东西)neo4j_query("""MATCH (n) DETACH DELETE n;""")#创建第一个主节点neo4j_query("""MERGE (l:LaborMarket {name:"Labor Market"})RETURN l""")#向KG中添加实体:技能、经验、学历、专业neo4j_query("""MATCH (l:LaborMarket)UNWIND $data as rowMERGE (o:Offer{id:row.text_sha256})SET o.text = row.textMERGE (l)-[:HAS_OFFER]->(o)WITH o, row.annotations as entitiesUNWIND entities as entityMERGE (e:Entity {id:entity.id})ON CREATE SET e.name = entity.text, e.label = entity.label_upperMERGE (o)-[m:MENTIONS]->(e)ON CREATE SET m.count = 1ON MATCH SET m.count = m.count + 1WITH e as eCALL apoc.create.addLabels( id(e), [ e.label ] )YIELD nodeREMOVE node.labelRETURN node""", {'data': parsed_ents})#为实体EXPERIENCE添加属性'name'res = neo4j_query("""MATCH (e:EXPERIENCE)RETURN e.id as id, e.name as name""")#从EXPERIENCE name中提取工作年限,并保存在属性years中import redef get_years(name):return re.findall(r"\d+",name)[0]res["years"] = res.name.map(lambda name: get_years(name))data = res.to_dict('records')#为实体EXPERIENCE添加属性'years'neo4j_query("""UNWIND $data as rowMATCH (e:EXPERIENCE {id:row.id})SET e.years = row.yearsRETURN e.name as name, e.years as years""",{"data":data})#将关系添加到KGneo4j_query("""UNWIND $data as rowMATCH (source:Entity {id: row.head})MATCH (target:Entity {id: row.tail})MATCH (offer:Offer {id: row.source})MERGE (source)-[:REL]->(r:Relation {type: row.type})-[:REL]->(target)MERGE (offer)-[:MENTIONS]->(r)""", {'data': predicted_rels})
复制代码


现在开始进入有趣的部分了。我们可以启动知识图谱并运行查询了。让我们运行一个查询,找出与目标简历最匹配的职位:


#在表中显示最佳匹配项other_id = "8de6e42ddfbc2a8bd7008d93516c57e50fa815e64e387eb2fc7a27000ae904b6"query = """MATCH (o1:Offer {id:$id})-[m1:MENTIONS]->(s:Entity)<- [m2:MENTIONS]-(o2:Offer)RETURN DISTINCT o1.id as Source,o2.id as Proposed_Offer, count(*) as freq, collect(s.name) as common_termsORDER BY freqDESC LIMIT $limit"""res = neo4j_query(query,{"id":other_id,"limit":3})res#在neo4j浏览器中,使用该查询显示最佳匹配项的图"""MATCH (o1:Offer {id:"8de6e42ddfbc2a8bd7008d93516c57e50fa815e64e387eb2fc7a27000ae904b6"})-[m1:MENTIONS]->(s:Entity)<- [m2:MENTIONS]-(o2:Offer)WITH o1,s,o2, count(*) as freqMATCH (o1)--(s)RETURN collect(o2)[0], o1,s, max(freq)"""
复制代码


以表格形式显示的结果中的公共实体:



以可视化形式显示的图:


图片由作者提供:基于最佳匹配职位


虽然这个数据集只有 29 个职位描述,但这里介绍的方法可以应用于有成千上万个职位的大规模数据集。只需几行代码,我们立马就可以提取出与目标简历匹配度最高的工作。


下面,让我们找出最需要的技能:


query = """MATCH (s:SKILLS)<-[:MENTIONS]-(o:Offer)RETURN s.name as skill, count(o) as freqORDER BY freq DESCLIMIT 10"""res = neo4j_query(query)res
复制代码



以及需要最高工作年限的技能:


query = """MATCH (s:SKILLS)--(r:Relation)--(e:EXPERIENCE) where r.type = "EXPERIENCE_IN"return s.name as skill,e.years as yearsORDER BY years DESCLIMIT 10"""res = neo4j_query(query)res
复制代码



Web 开发和技术支持需要的工作年限最高,然后是安全设置。


最后,让我们查下共现率最高的技能对:


neo4j_query("""MATCH (s1:SKILLS)<-[:MENTIONS]-(:Offer)-[:MENTIONS]->(s2:SKILLS)WHERE id(s1) < id(s2)RETURN s1.name as skill1, s2.name as skill2, count(*) as cooccurrenceORDER BY cooccurrenceDESC LIMIT 5""")
复制代码


小结


在这篇文章中,我们描述了如何利用基于转换器的 NER 和 spaCy 的关系提取模型,用 Neo4j 创建知识图谱。除了信息提取之外,图的拓扑结构还可以作为其他机器学习模型的输入。


将 NLP 与图数据库 Neo4j 相结合,可以加速许多领域的信息发现,相比之下,在医疗和生物医学领域的应用效果更为显著。


如果你有任何问题或希望为具体用例创建自定义模型,请给我们发邮件(admin@ubiai.tools),或是在 Twitter 上给我们留言(@UBIAI5)。


原文链接:How to Build a Knowledge Graph with Neo4J and Transformers

2022-03-21 15:204048

评论

发布
暂无评论
发现更多内容

差点跳起来了!阿里首推22w字Java面试复盘宝典成功助我入职美团

Java 程序员 后端

学透这份java进阶笔记,才知道为什么能一起斩获几十家大厂offer一定是有原因的

Java 程序员 后端

就这?多线程高并发分布式性能优化技术都不懂,你拿什么跳槽

Java 程序员 后端

工商银行分布式服务 C10K 场景解决方案,java基础实战项目飞机大战

Java 程序员 后端

字节首席架构师整合面试痛点,成就399页Java框架核心宝典

Java 程序员 后端

小白必看!结合实际实例,理解事务,多线程面试题java

Java 程序员 后端

已拿offer热乎乎的蚂蚁金服面经分享,建议收藏(Java岗、附答案)(1)

Java 程序员 后端

完美!字节3-1级别大佬把《数据结构与算法,linux翻墙教程视频

Java 程序员 后端

已开源!阿里巴巴SpringCloud微服务原理与架构项目实战,请签收

Java 程序员 后端

字节跳动一年一更的400多页算法刷题宝典已更新,力扣官网沸腾

Java 程序员 后端

学IT的人太多了,现在入行还有出路吗?,linux环境高级编程

Java 程序员 后端

学生管理系统(SSM简易版)总结,斗鱼Java开发二面被刷

Java 程序员 后端

实习生想面阿里应该掌握掌握哪些知识点?给学弟学妹们支招

Java 程序员 后端

小白都能看懂的简单爬虫入门案例剖析(爬虫入门看它就够了!

Java 程序员 后端

层层递进!MySQL性能优化步骤演进,一顿饭的时间我就会了

Java 程序员 后端

字节跳动,三面我败了!但是我把经验记录了下来,java编程思想第六版百度云

Java 程序员 后端

学习高并发的前置知识——Java中的线程基础,springcloud实战演练

Java 程序员 后端

Clickhouse技术分享

scalad

大数据 实时数仓 Clickhouse OLAP开源引擎

字节跳动Java开放岗面经:14天快速面试,已拿offer,Java全套百度云

Java 程序员 后端

实现一个简单的HTTP,京东java面试问题大全及答案大全

Java 程序员 后端

对Stream-API的用法鼓吹够多了,但性能到底怎么样呢?,mybatis和spring集成原理

Java 程序员 后端

学会RabbitMQ代理的连接,是一种怎样的体验?,mongodb教程

Java 程序员 后端

完美!白嫖4份满分级“并发编程,java架构师技术栈

Java 程序员 后端

实现一个简单的“个人博客”项目,java基础大纲思维导图

Java 程序员 后端

就这一次!详解操作系统底层原理的IO原理,提供高性能开发的多种实战案例

Java 程序员 后端

完全没想到,他竟然靠这个拿到了40万年薪的大厂AI岗offer!

Java 程序员 后端

完美!字节3-1级别大佬把《数据结构与算法(1),mybatisorm原理

Java 程序员 后端

少写点if-else吧,它的效率有多低你知道吗?,渣本二面阿里受挫

Java 程序员 后端

华为云专家向宇:工欲善其事必先利其器,才能做数据的“管家”

华为云数据库小助手

GaussDB GaussDB(for Influx) 华为云数据库 华为云数据库创新Lab

学弟学妹们请不要错过自己的“黄金奋斗三年”,java实战项目代码

Java 程序员 后端

安利一款非常NICE的-API-敏捷开发工具,java注释快捷键视频

Java 程序员 后端

如何使用Neo4J和Transformer构建知识图谱_文化 & 方法_Walid Amamou_InfoQ精选文章