写点什么

借助情感分析教计算机理解情感

  • 2019-06-19
  • 本文字数:2269 字

    阅读完需:约 7 分钟

借助情感分析教计算机理解情感

情感分析教计算机识别文本中的人类情感。基本原则是在简单性和准确性之间进行权衡。方法有很多,从使用与情绪相关的单词列表,到使用词嵌入、神经网络和注意机制等深度学习技术。


Johnson Controls 首席数据科学家Donagh Horgan将在RebelCon.io 2019大会上介绍为 Twitter 构建的一个情感分析器。大会将于 6 月 19 日至 20 日在爱尔兰科克举行。根据活动网站介绍:


  • RebelCon 连续第三年将科克软件工程社区聚集在一起,举行为期两天的研讨会,讨论软件行业的最新技术、文化和开发实践;

  • RebelCon 是由开发者社区为社区举办的非营利性技术会议。


在他的演讲中,Horgan 将展示如何迭代地为 Twitter 情感分析构建一个 AI 驱动的管道。


在过去的几年里,情感分析被用于越来越多的应用程序:它用于在客户支持中根据客户的感知情感倾向对进来的问题进行排序,在市场调研和民意调查中了解人们如何思考某些话题,在论坛和在线讨论区中检测辱骂、威胁和怒火。Johnson Controls 利用情感分析来发现暴力威胁,以更好地保护客户及其员工。


据 Horgan 说,情感分析在生命安全方面有着很大的机会。过去一年里发生了几起大规模枪击事件,犯罪嫌疑人事先在公共或半公共论坛上发布了警告。他看到了让机器分析这类内容从而拯救生命的可能;这种分析的成本将非常低。


InfoQ 采访了 Donagh Horgan,了解我们可以如何使用情感分析来教机器理解情感。


InfoQ:什么是情感分析?


Donagh Horgan:情感分析是人工智能的一个领域,它致力于教计算机识别文本中的人类情感。情感分析的目的是理解书面文本中的各种情感和强度。

通常,对于人类而言,这是一项简单的任务。例如,如果我告诉你“这部电影很棒”,你不用太考虑就会知道,我(1)对这部电影的评价很高(2)而且感到兴奋(3)。但是,对于机器来说,学习如何做到这一点更加困难,因为语言并不简单。例如,我可以说,“This movie is better than that one,”但不是“This movie is gooder than that one”,而那种知识是与生俱来的。

但是,计算机是通过算法工作的,要写出一套精确的、可维护的规则来理解英语中出现的所有异常情况是非常困难的。更糟糕的是,有许多不同的语言。这是个棘手的问题。


InfoQ:情感分析是如何工作的?


Horgan:有几种不同的方法,但基本原则是在简单性和准确性之间进行权衡。一种简单的方法是列出与你想要跟踪的每种情感相关的单词。例如,你可以做一个正面词汇表(好、很好、优秀)和一个负面词汇表(不好、极差、糟糕)。然后,你拿起你感兴趣的那篇文章,把其中出现的所有正面和负面的单词都记下来。如果总体上是正面的,那么你就可以得出结论:文本是正面的;否则,你可以得出结论:它是负面的。

你可以通过给每个单词设定一个“强度(strength)”,从而使这个过程更加准确。例如,“好”可能是 60%正面,但“很棒”听起来更加正面,你可能会给一个 80%的分数。并不像听起来那么费力,网上有免费开放的情感词列表(例如,Python 库pattern),所以你通常不需要自己整理。

但简单的单词计数往往无法识别细微的差别,无法掌握更多专用的语言结构。例如,我可能会告诉你,“这部电影非常好”,这可能会生成一个中性或者负面分数,取决于你如何看待“非常(awfully)”这个词。虽然借助单词计数可以变通地解决解决这个问题,但一般来说,这些方法还不足以彻底地解决该问题。

一个解决方案是使用机器学习算法,让计算机学习单个单词或词对或更长一点的文本与给定情感相关的概率。我不会介绍这里用到的数学知识,但构建一个合理的朴素贝叶斯模型(或者至少是比单词计数要好)并不难。


InfoQ:情感分析有多可靠?我们可以相信其分析结果吗?


Horgan:遗憾的是,目前已知的所有方法都缺少某种形式的上下文。例如,单词计数过于强调单词,所以无法理解诸如“重大失败(great failure)”这样的短语。使用朴素贝叶斯算法就可以解决这个问题,因为它可以学会把情绪与词对、三个词或任意长度的短语关联起来,但是,对于特定的双重否定,如果你没有足够的样本,它就仍可能在“I can’t get no satisfaction”这样的句子上犯错。

现在的最新技术是深度学习,它使用词嵌入、神经网络和注意机制等技术,学习人类语言的复杂结构。但即使是这些模型也会搞不明白更复杂的语言结构,如讽刺和挖苦。事实上,甚至在人类中间,人们对情感的判断一致性也很少超过 80%。我认为这里的教训是,语言和情感绑定在一起,但这种关系并不总是清晰的,甚至对我们而言也是如此。目前,机器只能做得和我们一样好。


InfoQ:您在为 Twitter 构建情感分析器的过程中学到了什么?


Horgan:实际上相当多。它比听起来容易,也比听起来难。你可以试下现成的方法,它们有效,但如果你想使自己构建的东西非常准确,你得更具体一点。比如,你可以考虑发推特的人的个人资料。唐纳德·特朗普就是一个很好的例子,他要么非常正面,要么非常负面。将这类信息加入关于单个用户的算法中可以得到更好的结果。


InfoQ:如果 InfoQ 的读者想了解更多关于情感分析的内容,他们该如何入手?


Horgan:关于数据科学,有很多教程(有些更高级)通常是针对只想快速入手的计算机迷。一般来说,Natural Language Processing with Python是一个很好的起点,虽然这不是免费的。有很多有用的 Python 库提供了良好的文档和教程,如nltkspacytextblobvadergensim


InfoQ 正在以文章、问答、综述的形式对RebelCon.io 2019 大会进行报道。InfoQ 此前发表了 Sabine Wojcieszak 的文章“CI= 持续改进,DevOps 的动力源泉”。


查看英文原文Teaching Machines to Understand Emotions With Sentiment Analysis


2019-06-19 08:005363
用户头像

发布了 729 篇内容, 共 465.0 次阅读, 收获喜欢 1542 次。

关注

评论

发布
暂无评论
发现更多内容

2020年6月11日 高性能MySQL

瑞克与莫迪

<<架构师训练营>>第一周作业

R20114

极客大学架构师训练营

02-kubernetes自建CA及双向TLS认证

绿星雪碧

Kubernetes TLS CA证书

极客大学架构师训练营 听课总结 - 架构视图,设计文档 -- 第二课

John(易筋)

极客时间 极客大学 架构设计 极客大学架构师训练营 架构文档

非结构化数据可视化 —— 现在与未来

做技术BP的文案Gou

人工智能 大数据 数据可视化 非结构化数据

作业一:食堂就餐卡系统设计

seng man

极客大学架构师训练营

架构第一周-学习总结

seng man

LocalDateTime和Date的比较与区别

彭阿三

时间格式化 LocalDateTime Date

架构第一课学习总结

师哥

作业 - 1 & 2

Happy-Coming

Homework

游戏夜读 | 如何成长为游戏人?

game1night

Intellij IDEA 右击没有run

程李文华

钟离昧的第一张架构设计图之旅

XxxxxxxMr

30岁,就被大厂抛弃了

J.Smile

求职

可视化算法网站汇总,从此简单学算法!(附动图)

王磊

Java 算法

读笔 | 既然拖延症难以根治,不妨暂且享受它

张鸱鸺

读书笔记 时间管理 随笔杂谈

独立开发者为什么不需要运营也能月薪几万,甚至几十万?

非著名程序员

程序员 独立开发者 副业赚钱 程序人生 提升认知

搭建websocket消息推送服务,必须要考虑的几个问题

GoEasy消息推送

websocket 消息推送 即时通讯

【写作群星榜】6.5~6.11写作平台优秀作者&文章排名

InfoQ写作社区官方

写作平台 排行榜 热门活动

数据库周刊27丨6月最新国产数据库排行;OB成立新公司奥星贝斯;腾讯云发布图数据库TGDB;Oracle坏块修复;MySQL故障排查导图;经典SQL语句大全...

墨天轮

数据库

Android 无埋点从入门到放弃:了解 Java 字节码

GrowingIO技术专栏

钟离昧的一梭子架构师之旅

XxxxxxxMr

从微服务到Service Mesh

博文视点Broadview

架构 微服务 Service Mesh istio 架构师

系统/子系统/模块/组件/框架/架构

gen_jin

你并不理解i++和++i

flyhero

Java 程序员 JVM i++

架构师训练营第一周学习总结

R20114

vs code中使用vetur对eslint格式化

玏佾

vscode

使用VSCode连接到IBM Cloud区块链网络

程序那些事

智能合约 hyperledger fabric ibm cloud

关于UML、4+1视图、系统架构的思考

吴建中

数据同步,应该如何设计

迹_Jason

面向对象五大基本原则

彭阿三

面向对象设计 面向对象五个基本原则 基本原则

借助情感分析教计算机理解情感_AI&大模型_Ben Linders_InfoQ精选文章