写点什么

深度学习的数学(三):神经元工作的数学表示

  • 2020-04-03
  • 本文字数:2643 字

    阅读完需:约 9 分钟

深度学习的数学(三):神经元工作的数学表示

编者按:本文节选自图灵程序设计丛书 《深度学习的数学》一书中的部分章节。


前文中用数学式表示了神经元的工作。本节我们试着将其在数学上一般化。

简化神经元的图形

为了更接近神经元的形象,1 - 2 节中将神经元表示为了下图的样子。



然而,为了画出网络,需要画很多的神经元,在这种情况下上面那样的图就不合适了。因此,我们使用如下所示的简化图,这样很容易就能画出大量的神经元。



为了与生物学的神经元区分开来,我们把经过这样简化、抽象化的神经元称为 神经单元(unit)。


注:很多文献直接称为“神经元”。本书为了与生物学术语“神经元”区分,使用“神经单元”这个称呼。另外,也有文献将“神经单元”称为“人工神经元”,但是由于现在也存在生物上的人工神经元,所以本书中也不使用“人工神经元”这个称呼。

激活函数

将神经元的示意图抽象化之后,对于输出信号,我们也对其生物上的限制进行一般化。


根据点火与否,生物学上的神经元的输出 分别取值 1 和 0(下图)。



然而,如果除去“生物”这个条件,这个“0 和 1 的限制”也应该是可以解除的。这时表示点火与否的下式(1 - 2 节式 (3))就需要修正。


点火的式子:


这里, 是单位阶跃函数。我们将该式一般化,如下所示。




这里的函数 是建模者定义的函数,称为 激活函数(activation function)。 是模型允许的任意数值, 是函数 能取到的任意数值。这个式 (2) 就是今后所讲的神经网络的出发点。


注:虽然式 (2) 只考虑了 3 个输入,但这是很容易推广的。另外,式 (1) 使用的单位阶跃函数 在数学上也是激活函数的一种。


请注意,式 (2) 的输出 的取值并不限于 0 和 1,对此并没有简单的解释。一定要用生物学来比喻的话,可以考虑神经单元的“兴奋度”“反应度”“活性度”。


我们来总结一下神经元和神经单元的不同点,如下表所示。


神经元神经单元
输出值 $y$0或1模型允许的任意数值
激活函数单位阶跃函数由分析者给出,其中著名的是 Sigmoid 函数(后述)
输出的解释点火与否神经单元的兴奋度、反应度、活性度



将神经元点火的式 (1) 一般化为神经单元的激活函数式 (2),要确认这样做是否有效,就要看实际做出的模型能否很好地解释现实的数据。实际上,式 (2) 表示的模型在很多模式识别问题中取得了很好的效果。

Sigmoid 函数

激活函数的代表性例子是 Sigmoid 函数 ,其定义如下所示。


关于这个函数,我们会在后面详细讨论(2-1 节)。这里先来看看它的图形,Sigmoid 函数 的输出值是大于 0 小于 1 的任意值。此外,该函数连续、光滑,也就是说可导。这两种性质使得 Sigmoid 函数很容易处理。



单位阶跃函数的输出值为 1 或 0,表示点火与否。然而,Sigmoid 函数的输出值大于 0 小于 1,这就有点难以解释了。如果用生物学术语来解释的话,如上文中的表格所示,可以认为输出值表示神经单元的兴奋度等。输出值接近 1 表示兴奋度高,接近 0 则表示兴奋度低。



本书中将 Sigmoid 函数作为标准激活函数使用,因为它具有容易计算的漂亮性质。如果用数学上单调递增的可导函数来代替,其原理也是一样的。

偏置

再来看一下激活函数的式 (2)。


这里的 称为阈值,在生物学上是表现神经元特性的值。从直观上讲, 表示神经元的感受能力,如果 值较大,则神经元不容易兴奋(感觉迟钝),而如果值较小,则神经元容易兴奋(敏感)。


然而,式 (2) 中只有 带有负号,这看起来不漂亮。数学不喜欢不漂亮的东西。另外,负号具有容易导致计算错误的缺点,因此,我们将 替换为


经过这样处理,式子变漂亮了,也不容易发生计算错误。这个 称为 偏置(bias)。



本书将式 (4) 作为标准使用。另外,此时的加权输入 (1-2 节)如下所示。


式 (4) 和式 (5) 是今后所讲的神经网络的出发点,非常重要。


另外,生物上的权重 和阈值 )都不是负数,因为负数在自然现象中实际上是不会出现的。然而,在将神经元一般化的神经单元中,是允许出现负数的。


问题 右图是一个神经单元。如图所示,输入 的对应权重是 2,输入 的对应权重是 3,偏置是 -1。根据下表给出的输入,求出加权输入 和输出 。注意这里的激活函数是 Sigmoid 函数。

输入 \boldsymbol{x_1}输入 \boldsymbol{x_2}加权输入 \boldsymbol{z}输出 \boldsymbol{y}
0.20.1
0.60.5

结果如下表所示(式 (3) 中的 e 取 e = 2.7 进行计算)

输入 \boldsymbol{x_1}输入 \boldsymbol{x_2}加权输入 \boldsymbol{z}输出 \boldsymbol{y}
0.20.12×0.2 + 3×0.1 - 1 = -0.30.43
0.60.52×0.6 + 3×0.5 - 1 = 1.70.84


备注 改写式 (5)

我们将式 (5) 像下面这样整理一下。


这里增加了一个虚拟的输入,可以理解为以常数 1 作为输入值(右图)。

于是,加权输入 可以看作下面两个向量的内积。


计算机擅长内积的计算,因此按照这种解释,计算就变容易了。


图书简介http://www.ituring.com.cn/book/2593



相关阅读


深度学习的数学(一):神经网络和深度学习


深度学习的数学(二):神经元工作的数学表示


2020-04-03 10:001730

评论

发布
暂无评论
发现更多内容

后端服务性能测试能力建设101

RingCentral铃盛

typescript 后端 ansible node,js SDET

社区点赞业务缓存设计优化探索

得物技术

缓存 后端 重构 方案设计

语音聊天app源码——钠斯直播系统源码

开源直播系统源码

直播系统源码 语音聊天系统 语音聊天软件 一对一语音聊天系统

一种分布式深度学习编程新范式:Global Tensor

OneFlow

深度学习 编程 分布式

SAP ABAP Netweaver 容器化的一些前沿性研究工作分享

汪子熙

SAP abap Netweaver Docker 镜像 7月月更

JAVA编程规范之ORM 映射

源字节1号

后端技术

Python 高阶

Damon

7月月更

万字详解“用知识图谱驱动企业业绩增长”

博文视点Broadview

如何写一篇百万阅读量的文章

六月的雨在InfoQ

内容 个人提升 写作技巧

SAP ABAP 守护进程的实现方式

汪子熙

操作系统 守护进程 SAP abap 7月月更

一文详解Nodejs中fs文件模块与path路径模块

timerring

node.js path FS 签约计划第三季

Happens-Before原则深入解读

转转技术团队

Java JVM java 并发

大咖观点+500强案例,软件团队应该这样提升研发效能!

万事ONES

智能合约dapp系统开发流程技术

开发微hkkf5566

数据中台建设(二):数据中台简单介绍

Lansonli

数据中台 7月月更

10 个 Reduce 常用“奇技淫巧”

掘金安东尼

JavaScript 前端 7月月更

服务器内存故障预测居然可以这样做!

vivo互联网技术

运维 内存监控 EDAC 内存预测

入门前端 -- CSS

bo

CSS 前端 7月月更

期待已久的 RocketMQ Summit 等待你的参与!

阿里巴巴云原生

Apache 阿里云 RocketMQ 云原生 消息队列

武林头条-建站小能手争霸赛

hum建应用专家

数据库 wordpass

2B和2C

白粥

莫慌!Java 多商户外贸版系统这不就来了么

CRMEB

一文辨析 Java、JSP、JavaScript

攻城狮杰森

Java JavaScript jsp 7月月更

Linux 常用命令(二)

五分钟学大数据

Linux 7月月更

元宇宙GameFi链游系统开发NFT技术

薇電13242772558

NFT 元宇宙 链游

微服务化解决文库下载业务问题实践

百度Geek说

Java 微服务

面试突击68:为什么 TCP 需要 3 次握手?

王磊

Java 面试题 网络

议程速递 | 7月27日分论坛议程一览

kk-OSC

开源 开放原子全球开源峰会

Okaleido生态核心权益OKA,尽在聚变Mining模式

小哈区块

深度学习的数学(三):神经元工作的数学表示_AI&大模型_涌井良幸,涌井贞美_InfoQ精选文章