大咖直播-鸿蒙原生开发与智能提效实战!>>> 了解详情
写点什么

深度学习的数学(三):神经元工作的数学表示

  • 2020-04-03
  • 本文字数:2643 字

    阅读完需:约 9 分钟

深度学习的数学(三):神经元工作的数学表示

编者按:本文节选自图灵程序设计丛书 《深度学习的数学》一书中的部分章节。


前文中用数学式表示了神经元的工作。本节我们试着将其在数学上一般化。

简化神经元的图形

为了更接近神经元的形象,1 - 2 节中将神经元表示为了下图的样子。



然而,为了画出网络,需要画很多的神经元,在这种情况下上面那样的图就不合适了。因此,我们使用如下所示的简化图,这样很容易就能画出大量的神经元。



为了与生物学的神经元区分开来,我们把经过这样简化、抽象化的神经元称为 神经单元(unit)。


注:很多文献直接称为“神经元”。本书为了与生物学术语“神经元”区分,使用“神经单元”这个称呼。另外,也有文献将“神经单元”称为“人工神经元”,但是由于现在也存在生物上的人工神经元,所以本书中也不使用“人工神经元”这个称呼。

激活函数

将神经元的示意图抽象化之后,对于输出信号,我们也对其生物上的限制进行一般化。


根据点火与否,生物学上的神经元的输出 分别取值 1 和 0(下图)。



然而,如果除去“生物”这个条件,这个“0 和 1 的限制”也应该是可以解除的。这时表示点火与否的下式(1 - 2 节式 (3))就需要修正。


点火的式子:


这里, 是单位阶跃函数。我们将该式一般化,如下所示。




这里的函数 是建模者定义的函数,称为 激活函数(activation function)。 是模型允许的任意数值, 是函数 能取到的任意数值。这个式 (2) 就是今后所讲的神经网络的出发点。


注:虽然式 (2) 只考虑了 3 个输入,但这是很容易推广的。另外,式 (1) 使用的单位阶跃函数 在数学上也是激活函数的一种。


请注意,式 (2) 的输出 的取值并不限于 0 和 1,对此并没有简单的解释。一定要用生物学来比喻的话,可以考虑神经单元的“兴奋度”“反应度”“活性度”。


我们来总结一下神经元和神经单元的不同点,如下表所示。


神经元神经单元
输出值 $y$0或1模型允许的任意数值
激活函数单位阶跃函数由分析者给出,其中著名的是 Sigmoid 函数(后述)
输出的解释点火与否神经单元的兴奋度、反应度、活性度



将神经元点火的式 (1) 一般化为神经单元的激活函数式 (2),要确认这样做是否有效,就要看实际做出的模型能否很好地解释现实的数据。实际上,式 (2) 表示的模型在很多模式识别问题中取得了很好的效果。

Sigmoid 函数

激活函数的代表性例子是 Sigmoid 函数 ,其定义如下所示。


关于这个函数,我们会在后面详细讨论(2-1 节)。这里先来看看它的图形,Sigmoid 函数 的输出值是大于 0 小于 1 的任意值。此外,该函数连续、光滑,也就是说可导。这两种性质使得 Sigmoid 函数很容易处理。



单位阶跃函数的输出值为 1 或 0,表示点火与否。然而,Sigmoid 函数的输出值大于 0 小于 1,这就有点难以解释了。如果用生物学术语来解释的话,如上文中的表格所示,可以认为输出值表示神经单元的兴奋度等。输出值接近 1 表示兴奋度高,接近 0 则表示兴奋度低。



本书中将 Sigmoid 函数作为标准激活函数使用,因为它具有容易计算的漂亮性质。如果用数学上单调递增的可导函数来代替,其原理也是一样的。

偏置

再来看一下激活函数的式 (2)。


这里的 称为阈值,在生物学上是表现神经元特性的值。从直观上讲, 表示神经元的感受能力,如果 值较大,则神经元不容易兴奋(感觉迟钝),而如果值较小,则神经元容易兴奋(敏感)。


然而,式 (2) 中只有 带有负号,这看起来不漂亮。数学不喜欢不漂亮的东西。另外,负号具有容易导致计算错误的缺点,因此,我们将 替换为


经过这样处理,式子变漂亮了,也不容易发生计算错误。这个 称为 偏置(bias)。



本书将式 (4) 作为标准使用。另外,此时的加权输入 (1-2 节)如下所示。


式 (4) 和式 (5) 是今后所讲的神经网络的出发点,非常重要。


另外,生物上的权重 和阈值 )都不是负数,因为负数在自然现象中实际上是不会出现的。然而,在将神经元一般化的神经单元中,是允许出现负数的。


问题 右图是一个神经单元。如图所示,输入 的对应权重是 2,输入 的对应权重是 3,偏置是 -1。根据下表给出的输入,求出加权输入 和输出 。注意这里的激活函数是 Sigmoid 函数。

输入 \boldsymbol{x_1}输入 \boldsymbol{x_2}加权输入 \boldsymbol{z}输出 \boldsymbol{y}
0.20.1
0.60.5

结果如下表所示(式 (3) 中的 e 取 e = 2.7 进行计算)

输入 \boldsymbol{x_1}输入 \boldsymbol{x_2}加权输入 \boldsymbol{z}输出 \boldsymbol{y}
0.20.12×0.2 + 3×0.1 - 1 = -0.30.43
0.60.52×0.6 + 3×0.5 - 1 = 1.70.84


备注 改写式 (5)

我们将式 (5) 像下面这样整理一下。


这里增加了一个虚拟的输入,可以理解为以常数 1 作为输入值(右图)。

于是,加权输入 可以看作下面两个向量的内积。


计算机擅长内积的计算,因此按照这种解释,计算就变容易了。


图书简介http://www.ituring.com.cn/book/2593



相关阅读


深度学习的数学(一):神经网络和深度学习


深度学习的数学(二):神经元工作的数学表示


2020-04-03 10:001647

评论

发布
暂无评论
发现更多内容

爱了,Spring Cloud Alibaba内部微服务架构笔记真的太牛了

Java你猿哥

Java 微服务 微服务架构 Spring Cloud ssm

深度解析Seata AT 模式中性能优化与隔离保障的平衡之道

Java你猿哥

Java 数据 ssm 脏读

宝兰德应用服务器软件与华为云GaussDB完成兼容互认证

YG科技

MongoDB源码学习:原子操作WriteUnitOfWork

云里有只猫

mongodb 源码刨析

如何从零实现一个简单的Spring Bean容器

Java你猿哥

Java spring ssm Spring Bean Java web

硬核!力扣官方首发了这套1568页LeetCode算法刷题笔记(彩页版)

Java你猿哥

面试 算法 LeetCode ssm

设计模式之不一样的责任链模式

越长大越悲伤

Java 设计模式

Go 语言流行 ORM 框架 GORM 使用介绍

江湖十年

后端 ORM框架 ORM Go 语言 gorm

从BeyondCampus最佳实践,洞察高校零信任发展趋势

权说安全

简单好用的便利贴工具:Sticky 激活版

真大的脸盆

Mac Mac 软件 便利贴工具 便利贴软件

行业DBA走进华为,共建数据库生态

YG科技

Nautilus Chain上首个DEX PoseiSwap即将开启IDO,潜力几何?

西柚子

开源赋能 普惠未来|腾讯寄语2023开放原子全球开源峰会

开放原子开源基金会

开源 开放原子全球开源峰会 开放原子

Java上进了,JDK21 要来了,并发编程再也不是噩梦了

Java你猿哥

Java jdk ssm

Microsoft Remote Desktop下载,微软远程连接工具

Rose

microsoft remote desktop 微软远程桌面连接工具 mac远程链接

Focus Matrix for Mac(智能任务管理器) v1.6.1激活版

Rose

Focus Matrix Focus Matrix破解 focus matrix mac激活版 智能任务管理器

火山引擎DataLeap的Catalog系统搜索实践(三):Learning to rank与后续工作

字节跳动数据平台

数据湖 数据化 数据平台 大数据分析 DataLeap

synchronized和Lock有什么区别?

javacn.site

Xcode for Mac(开发工具)v14.3.1正式版

Rose

Xcode Mac版 Xcode中文版 Xcode破解版

mac高质量图像浏览处理软件 GraphicConverter 12 v12.0.3(6140)中文直装版

Rose

GraphicConverter 12中文 GraphicConverter破解 mac图像浏览器 GraphicConverter下载

[EuroSys2023 Best Poster] 面向动态图的极低时延GNN推理采样服务

阿里云大数据AI技术

人工智能 机器学习 推理 企业号 6 月 PK 榜 DGS

怎么看阿里拆中台这件事

agnostic

中台架构

App Cleaner & Uninstaller:mac专业的系统清理优化工具

Rose

App Cleaner 系统清理工具 苹果mac系统优化 App Cleaner 破解

国产自研数据库是更新换代首选

YG科技

强渡大渡河!华为云GaussDB支撑华为MetaERP系统全面替换

YG科技

写给程序员的可逆计算理论辨析补遗

canonical

低代码 可逆计算 范畴论

技术驱动,数据赋能,华为云GaussDB给世界一个更优选择

YG科技

开源赋能 普惠未来|OpenHarmony诚邀您参与2023开放原子全球开源峰会

开放原子开源基金会

开源 OpenHarmony 开放原子

如何在企业中培养平台工程文化?

SEAL安全

平台工程 平台工程文化

华为云GaussDB以技术创新引领金融行业分布式转型

YG科技

【2023华为云CodeArts Build 实战训练营】云端实战-玩转编译构建

云计算 华为云 华为开发者大会2023

深度学习的数学(三):神经元工作的数学表示_AI&大模型_涌井良幸,涌井贞美_InfoQ精选文章