写点什么

深度学习的数学(三):神经元工作的数学表示

  • 2020-04-03
  • 本文字数:2643 字

    阅读完需:约 9 分钟

深度学习的数学(三):神经元工作的数学表示

编者按:本文节选自图灵程序设计丛书 《深度学习的数学》一书中的部分章节。


前文中用数学式表示了神经元的工作。本节我们试着将其在数学上一般化。

简化神经元的图形

为了更接近神经元的形象,1 - 2 节中将神经元表示为了下图的样子。



然而,为了画出网络,需要画很多的神经元,在这种情况下上面那样的图就不合适了。因此,我们使用如下所示的简化图,这样很容易就能画出大量的神经元。



为了与生物学的神经元区分开来,我们把经过这样简化、抽象化的神经元称为 神经单元(unit)。


注:很多文献直接称为“神经元”。本书为了与生物学术语“神经元”区分,使用“神经单元”这个称呼。另外,也有文献将“神经单元”称为“人工神经元”,但是由于现在也存在生物上的人工神经元,所以本书中也不使用“人工神经元”这个称呼。

激活函数

将神经元的示意图抽象化之后,对于输出信号,我们也对其生物上的限制进行一般化。


根据点火与否,生物学上的神经元的输出 分别取值 1 和 0(下图)。



然而,如果除去“生物”这个条件,这个“0 和 1 的限制”也应该是可以解除的。这时表示点火与否的下式(1 - 2 节式 (3))就需要修正。


点火的式子:


这里, 是单位阶跃函数。我们将该式一般化,如下所示。




这里的函数 是建模者定义的函数,称为 激活函数(activation function)。 是模型允许的任意数值, 是函数 能取到的任意数值。这个式 (2) 就是今后所讲的神经网络的出发点。


注:虽然式 (2) 只考虑了 3 个输入,但这是很容易推广的。另外,式 (1) 使用的单位阶跃函数 在数学上也是激活函数的一种。


请注意,式 (2) 的输出 的取值并不限于 0 和 1,对此并没有简单的解释。一定要用生物学来比喻的话,可以考虑神经单元的“兴奋度”“反应度”“活性度”。


我们来总结一下神经元和神经单元的不同点,如下表所示。


神经元神经单元
输出值 $y$0或1模型允许的任意数值
激活函数单位阶跃函数由分析者给出,其中著名的是 Sigmoid 函数(后述)
输出的解释点火与否神经单元的兴奋度、反应度、活性度



将神经元点火的式 (1) 一般化为神经单元的激活函数式 (2),要确认这样做是否有效,就要看实际做出的模型能否很好地解释现实的数据。实际上,式 (2) 表示的模型在很多模式识别问题中取得了很好的效果。

Sigmoid 函数

激活函数的代表性例子是 Sigmoid 函数 ,其定义如下所示。


关于这个函数,我们会在后面详细讨论(2-1 节)。这里先来看看它的图形,Sigmoid 函数 的输出值是大于 0 小于 1 的任意值。此外,该函数连续、光滑,也就是说可导。这两种性质使得 Sigmoid 函数很容易处理。



单位阶跃函数的输出值为 1 或 0,表示点火与否。然而,Sigmoid 函数的输出值大于 0 小于 1,这就有点难以解释了。如果用生物学术语来解释的话,如上文中的表格所示,可以认为输出值表示神经单元的兴奋度等。输出值接近 1 表示兴奋度高,接近 0 则表示兴奋度低。



本书中将 Sigmoid 函数作为标准激活函数使用,因为它具有容易计算的漂亮性质。如果用数学上单调递增的可导函数来代替,其原理也是一样的。

偏置

再来看一下激活函数的式 (2)。


这里的 称为阈值,在生物学上是表现神经元特性的值。从直观上讲, 表示神经元的感受能力,如果 值较大,则神经元不容易兴奋(感觉迟钝),而如果值较小,则神经元容易兴奋(敏感)。


然而,式 (2) 中只有 带有负号,这看起来不漂亮。数学不喜欢不漂亮的东西。另外,负号具有容易导致计算错误的缺点,因此,我们将 替换为


经过这样处理,式子变漂亮了,也不容易发生计算错误。这个 称为 偏置(bias)。



本书将式 (4) 作为标准使用。另外,此时的加权输入 (1-2 节)如下所示。


式 (4) 和式 (5) 是今后所讲的神经网络的出发点,非常重要。


另外,生物上的权重 和阈值 )都不是负数,因为负数在自然现象中实际上是不会出现的。然而,在将神经元一般化的神经单元中,是允许出现负数的。


问题 右图是一个神经单元。如图所示,输入 的对应权重是 2,输入 的对应权重是 3,偏置是 -1。根据下表给出的输入,求出加权输入 和输出 。注意这里的激活函数是 Sigmoid 函数。

输入 \boldsymbol{x_1}输入 \boldsymbol{x_2}加权输入 \boldsymbol{z}输出 \boldsymbol{y}
0.20.1
0.60.5

结果如下表所示(式 (3) 中的 e 取 e = 2.7 进行计算)

输入 \boldsymbol{x_1}输入 \boldsymbol{x_2}加权输入 \boldsymbol{z}输出 \boldsymbol{y}
0.20.12×0.2 + 3×0.1 - 1 = -0.30.43
0.60.52×0.6 + 3×0.5 - 1 = 1.70.84


备注 改写式 (5)

我们将式 (5) 像下面这样整理一下。


这里增加了一个虚拟的输入,可以理解为以常数 1 作为输入值(右图)。

于是,加权输入 可以看作下面两个向量的内积。


计算机擅长内积的计算,因此按照这种解释,计算就变容易了。


图书简介http://www.ituring.com.cn/book/2593



相关阅读


深度学习的数学(一):神经网络和深度学习


深度学习的数学(二):神经元工作的数学表示


2020-04-03 10:001365

评论

发布
暂无评论
发现更多内容

【CSS 盒子模型(下)】:padding 和 margin

翼同学

CSS html 前端 8月月更

非关系型数据库Redis核心内容

浅羽技术

数据库 redis redis持久化 Memcache 8月月更

zookeeper的特点和应用场景

浅羽技术

zookeeper 分布式 观察者模式 注册中心 8月月更

Docker杀掉了容器?问题分析与解决过程全面复盘

程序员欣宸

Docker 8月月更

【CSS 盒子模型(上)】:width、height、overflow、border

翼同学

CSS html 前端 8月月更

数字藏品app开发:数字藏品发行制作的关键

开源直播系统源码

NFT 数字藏品 数字藏品开发 数字藏品系统 数字藏品软件

Selenium 中的 JUnit 注解

FunTester

玩转KubeEdge保姆级攻略

乌龟哥哥

8月月更

[JS入门到进阶] 手写解析uin8数组的工具:解析二进制字节,太快太方便了!

HullQin

CSS JavaScript html 前端 8月月更

【CSS关键字】:inherit、initial、unset分别有哪些作用?

翼同学

CSS html 前端 8月月更 学习分享

持久,redis 持久化有哪几种方式,怎么选?

知识浅谈

redis持久化 8月月更

源码解析 kubectl port-forward 工作原理

张晓辉

Kubernetes 云原生 源码解析

弹性云端新算力,驱动沉浸新交互 |2022阿里云金融创新峰会

阿里云弹性计算

计算巢 云盒 倚天实例 专属Region

佛山复星禅诚医院黄汉森:云边协同,打造线上线下一体化智慧医疗

阿里云弹性计算

弹性计算 分布式云 云盒 异地双活

如何通过经纬度坐标获取附近的地址信息?

HarmonyOS SDK

定位

面试突击79:Bean 作用域是啥?它有几种类型?

王磊

Java 常见面试题

混迹职场10多年的数据开发老鸟,居然被一个职场新人上了一课

雨果

数据工程师

MySQL查询重写插件

TimeFriends

8月月更

亚马逊云科技与TalkingData携手助力美妆巨头数字化营销闭环安全合规地提效

Lily

【CSS】怎么理解层叠性、继承性和优先性?选择器的权重如何叠加?

翼同学

CSS html 前端 编程语言 8月月更

【CSS】什么是外边距的重叠?常见的有哪几种重叠情况?

翼同学

CSS 前端 编程语言 8月月更

【实践】手把手带你实现JWT登录鉴权

迷彩

分布式 微服务 前后端分离 JWT 8月月更

【数据结构实践】手把手带你快速实现自定义二叉树

迷彩

数据结构 算法 二叉树 二叉树遍历 8月月更

zookeeper的选主过程

浅羽技术

zookeeper 分布式 ZooKeeper原理 8月月更

【React】使用Next.js构建并部署个人博客

海底烧烤店ai

nuxt 博客开发 博客搭建 react rout 8月月更

浅谈JS发布订阅模式

海底烧烤店ai

JavaScript 前端 发布订阅模式 8月月更

【CSS·圆角边框】有关border-radius属性的记录以及实现原理

翼同学

CSS html 前端 8月月更

mysql基础

楠羽

#开源

《数字经济全景白皮书》银行业RPA应用专题分析 发布

易观分析

RPA 金融 银行

直播预告丨阿里云佐井:关注预警6要素,帮助用户实现精准监控和告警

阿里云弹性计算

监控 预警

深度学习的数学(三):神经元工作的数学表示_AI&大模型_涌井良幸,涌井贞美_InfoQ精选文章