写点什么

Apache MXNet 版本添加了对新的 NVIDIA Volta GPU 和 Sparse Tensor 的支持

  • 2019-11-07
  • 本文字数:1789 字

    阅读完需:约 6 分钟

Apache MXNet 版本添加了对新的 NVIDIA Volta GPU 和 Sparse Tensor 的支持

我们对 Apache MXNet 版本 0.12 的发布感到很兴奋。MXNet 社区的参与者密切合作,为用户带来了新的增强功能。在此版本中,MXNet 添加了两项新的重要功能:


  • 对 NVIDIA Volta GPU 的支持,这使用户能够大大减少神经网络模型的训练和推理时间。

  • 对 Sparse Tensor 的支持,这使用户能够以最有利于存储和计算的方式使用稀疏矩阵训练模型。

对 NVIDIA Volta GPU 架构的支持

MXNet v0.12 版本添加了对 NVIDIA Volta V100 GPU 的支持,这使客户训练卷积神经网络的速度比 Pascal GPU 的速度快 3.5 倍。训练神经网络涉及数万亿次的浮点数 (FP) 乘法与加法运算。这些计算通常已使用单精度 (FP32) 完成以实现较高的准确度。但是,最近的研究表明,用户可以通过使用半精度 (FP16) 数据类型的训练获得与使用 FP32 数据类型的训练相同的准确度。


Volta GPU 架构引入了 Tensor Core。每个 Tensor Core 每个时钟周期可执行 64 次乘法和加法混合运算,约为每个 CUDA 核心在每个时钟周期内执行的 FLOPS 的四倍。每个 Tensor Core 执行如下所示的运算:D = A x B + C,其中 A 和 B 是半精度矩阵,而 C 和 D 可以是半精度或单精度矩阵,从而执行混合精度训练。利用新的混合精度训练,用户可以通过对网络的大多数层使用 FP16 并在必要时使用更高精度的数据类型来获得最佳训练绩效,且不会降低精度。



MXNet 使用户能够轻松使用 FP16 训练模型以利用 Volta Tensor Core。例如,您只需在 MXNet 中通过将以下命令选项传递到 train_imagenet.py 脚本即可启用 FP16 训练。


Bash


--dtype float16
复制代码


最近,我们宣布推出一套新的 AWS Deep Learning AMI,它们预安装了针对 Amazon EC2 P3 实例系列中的 NVIDIA Volta V100 GPU 进行了优化的各种深度学习框架,其中包括 MXNet v0.12。只需在 AWS Marketplace 中单击一下鼠标即可开始;或者,您也可以按照此分步指南操作,开始使用您的第一个笔记本

Sparse Tensor 支持

MXNet v0.12 添加了对 Sparse Tensor 的支持,可高效地存储和计算大部分元素为零的张量。我们都很熟悉 Amazon 基于您过去的购买历史记录给出的推荐,并且熟悉 Netflix 基于您过去的查看历史记录和对其他节目的评分给出的节目推荐。这类适用于数百万人的基于深度学习的推荐引擎涉及大部分元素为零的稀疏矩阵的乘法与加法运算。以与在稠密矩阵之间执行矩阵运算相同的方式在稀疏矩阵之间执行的数万亿次矩阵运算在存储和计算方面的效率不高。在默认的稠密结构中存储和操作这类包含许多零元素的稀疏矩阵会导致浪费内存以及对零元素执行不必要的处理。


为了解决这类难点,MXNet 启用了 Sparse Tensor 支持,使 MXNet 用户能够以最有利于存储和计算的方式执行稀疏矩阵运算并更快地训练深度学习模型。MXNet v0.12 支持两大稀疏数据格式:Compressed Sparse Row (CSR) 和 Row Sparse (RSP)。CSR 格式经过优化,可表示包含大量列的矩阵,其中每个行仅包含几个非零元素。RSP 格式经过优化,可表示包含大量行的矩阵,其中大部分行切片都完全是零元素。例如,CSR 格式可用于为推荐引擎编码输入数据的特征向量,而 RSP 格式可用于在训练期间执行稀疏梯度更新。对于大多数常用的运算符 (例如,矩阵点积和元素级运算符),此版本启用对 CPU 的稀疏支持。未来版本中将添加对更多运算符的稀疏支持。


以下代码段说明如何将 scipy CSR 矩阵转换为 MXNet CSR 格式,并使用其中一个向量对其执行稀疏矩阵向量乘法运算。要了解有关在 MXNet 中使用新稀疏运算符的更多信息,请参阅这些教程


Bash


import scipy.sparse as spspimport mxnet as mx# construct a random scipy CSR matrixscipy_csr = spsp.rand(3, 4, format='csr', density=0.5)# convert scipy CSR matrix to MXNet CSR formatmx_csr = mx.nd.sparse.csr_matrix(scipy)# perform sparse matrix-vector multiplicationresult = mx.nd.sparse.dot(mx_csr, mx.nd.ones((4, 1)))
复制代码

后续步骤

MXNet 的入门很简单。可在发行说明中找到此版本的完整更改列表。如果您有疑问或建议,请给我们留言。


作者介绍:



Sukwon Kim 是 AWS Deep Learning 的高级产品经理。他负责开发让客户能够更轻松地使用深度学习引擎的产品,工作重点是开源 Apache MXNet 引擎。在业余时间,他喜欢徒步旅行和旅游。


本文转载自 AWS 技术博客。


原文链接:


https://amazonaws-china.com/cn/blogs/china/apache-mxnet-release-adds-support-for-new-nvidia-volta-gpus-and-sparse-tensor/


2019-11-07 08:00894

评论

发布
暂无评论
发现更多内容

2023容器网络趋势:CNI网络插件逐渐普及,Kube-OVN受欢迎度持续攀升

York

Kubernetes 云原生 容器网络 cni 容器网络方案

晴数智慧数据集名列北京市首批“人工智能大模型高质量数据集”,入选产业创新伙伴计划

极客天地

构建云上和云下统一的安全方案,华为云致力为企业降本增效

平平无奇爱好科技

爽游做得好,游戏部署方案必不可少,华为云游戏云端部署方案愈发吃香了

平平无奇爱好科技

全议程公布丨涌现中重塑,PingCAP 用户峰会 2023 邀你共同引领创新力量!

PingCAP

MySQL 数据库 TiDB pingCAP 平凯星辰

华为云云上云下一体化安全,如何为企业打造统一、高效的安全管理平台

平平无奇爱好科技

休闲类匹配竞技游戏公司为何需要华为云游戏云端部署方案?

平平无奇爱好科技

性能测试|JMeter压测结果分析

霍格沃兹测试开发学社

#性能测试 JMeter使用教程

性能测试|基于JMeter 完成典型电商场景(首页浏览)的性能压测

霍格沃兹测试开发学社

性能测试 JMeter使用教程

数字化转型与架构-规划篇|谁是需求调研的对象?

数字随行

数字化转型

模块六:拆分电商服务为微服务

家有两宝

架构实战营

代码随想录训练营 Day07 - 哈希表(下)

jjn0703

华为云游戏云端部署方案:如何为游戏厂商降本增效

平平无奇爱好科技

华为云CodeArts Check:带你掌握代码检查技巧,优化代码质量!

云计算 华为云 代码检查 代码检查、

瓴羊QuickBI,让企业更加清晰地管理和呈现数据

夜雨微澜

百度智能云入选北京市“算力伙伴”、“模型伙伴”!

彭飞

FastGithub:github加速神器,解决github打不开、用户头像无法加载、releases无法上传下载、git-clone、git-pull、git-push失败等问题。

汀丶人工智能

GitHub git加速

华为云函数工作流FunctionGraph新手操作指南

云计算 Serverless 华为云 华为开发者大会2023

构建以数据为中心的全面预算管理系统

智达方通

数据驱动 业财融合 全面预算管理系统

k8s部署springboot

tiandizhiguai

瓴羊QuickBI数据门户帮助企业高效管理和展示数据,使其更加明确易懂

对不起该用户已成仙‖

探究C语言中的二叉树

芯动大师

PoseiSwap 治理通证POSE登录PancakeSwap,开盘涨幅超2100%

BlockChain先知

网络信息安全尤为重要,华为云如何为企业构建云上云下一体化安全方案?

平平无奇爱好科技

🔥年中技术盘点暨7月主题征文活动开始啦!

InfoQ写作社区官方

热门活动 年中技术盘点

PoseiSwap 治理通证POSE登录PancakeSwap,开盘涨幅超2100%

股市老人

云上办公时代,华为云桌面表现如何?

平平无奇爱好科技

Python案例分析|井字棋(Tic Tac Toe)游戏 | 社区征文

TiAmo

Python 年中技术盘点 井字棋游戏

Apache MXNet 版本添加了对新的 NVIDIA Volta GPU 和 Sparse Tensor 的支持_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章