写点什么

火山引擎夺得 AIM2024 大赛视频显著性预测赛道冠军

  • 2024-10-31
    北京
  • 本文字数:1793 字

    阅读完需:约 6 分钟

大小:949.47K时长:05:24
火山引擎夺得AIM2024大赛视频显著性预测赛道冠军

近日,第 2024 届 ECCV 联合举办的 AIM Workshop 大赛公布比赛结果,在视频显著性预测赛道上,火山引擎多媒体实验室凭借自研的显著性检测算法获得冠军,技术能力达到行业领先水平。


参赛队伍

大赛背景


AIM (Advances in Image Manipulation) 2024 是新兴的计算机视觉国际竞赛,每年在模式识别和机器视觉顶级国际会议 ECCV 上举行。该比赛旨在鼓励学者和研究人员探索计算机视觉中图像分析、增强和恢复的新技术和方法,并且促进学术交流,在计算机视觉领域获得了广泛的关注和参与,吸引了众多高校和业界知名公司参加。


显著性预测任务旨在模拟人类视觉系统,预测图片/视频中人眼关注的区域,为下游各类计算机视觉任务提供引导和辅助信息。视频显著性预测赛道要求参赛者基于 1500 个视频 87w 帧共超过 4000 名用户的眼动追踪数据进行模型训练和验证,视频内容来自 youtube 和 vimeo 等网站,内容上涵盖了 PGC 长视频片段/UGC 短视频,语义上包含了游戏、动画、运动、vlog、电视节目等多个场景。最终排名由模型在验证集上的 AUC_J、CC、SIM、NSS 四项指标单项排名来加权得到,自研方案四项指标排名均取得第一,性能全面领先其他队伍方案。


视频显著性预测赛道结果


冠军算法介绍

显著性预测任务面临的主要挑战:

  • 眼动数据标注成本高,开源数据集规模有限,无法进行充分的预训练,因而容易导致模型鲁棒性不足。

  • 人眼的运动和聚焦既受到颜色、对比度等底层图像信号的刺激,也受到大脑感知系统对于场景的理解和推导的影响,因此对于语义复杂的场景,显著性预测难度大大增加

  • 随着观看时间的推移,显著区域会产生迁移,并具有一定延时性,需要对其时域特征进行良好的建模


此前方案大部分使用了基于 image 的骨干网络来进行特征提取,时域建模使用 LSTM/GRU 或者 3D 卷积来进行。团队沿用了 encoder-decoder 架构,整体结构如下图,输入一组 RGB 视频帧,最终输出显著性图谱。显著性图谱以灰度图表示,像素范围 0-255,数值越高代表显著性程度越高。其中,特征编码器为视觉编码器提取视频序列的多层级特征。特征解码器包含特征上采样模块、时序注意力模块、3D 卷积、上采样、2D 卷积、Sigmoid 等模块。



编码器的选择上,选取了针对 video 的视频基础模型 UMT(Unmasked Teacher)来作为 encoder,其网络使用预训练的 vision Transformer (ViT)。通过分别提取 ViT 不同块的输出(第 5,11,17,23),可得到不同层级的视频特征,这些特征包含丰富的底层细节和高层语义信息,同时也建模了视频不同帧间的时序关系。


解码器的设计上,采用了类似 U-Net 的分层上采样结构,在使用 3D 卷积对编码器特征进行时域降维的同时,进行不同尺度的空域上采样,并将不同层级的特征进行融合。此外,团队引入了时序注意力模块,以应对显著性的时域延迟和场景切换问题。这种设计不仅提升了模型对视频内容的理解能力,也为捕捉动态变化提供了有效支持。

数据处理方面,采用了基于视频内容的 train/val 划分策略,根据内容特性对数据集进行分组,然后按比例从每个组采样数据来组成最终的训练集。考虑到 UMT 的输入分辨率较小(224x224),对标签中的注视点信息进行了膨胀处理(dilate),减少其在下采样过程中的信息丢失,同时清除了离群点以加快收敛速度。

训练策略方面,通过 SIM 指标将数据划分为简单样本和困难样本,通过增加模型在困难样本上的损失权重,模型得以更加关注那些在训练过程中表现不佳的样本,有效提升了模型的整体性能和泛化能力。


总结

火山引擎多媒体实验室在视频显著性预测领域实现了突破性的进展,并获得了该赛道冠军。显著性预测技术的迭代升级可以帮助技术人员更为准确地预测用户观看行为,为用户观看体验的优化提供重要指引,也有助于推动视频行业向着更加智能化、高效化的方向发展。基于显著性预测的 ROI 编码和 ROI 区域增强方案已广泛应用于直播、点播及图片等内部业务场景,并通过火山引擎相关产品面向企业开放。


火山引擎多媒体实验室是字节跳动旗下的研究团队,致力于探索多媒体领域的前沿技术,参与国际标准化工作,其众多创新算法及软硬件解决方案已经广泛应用在抖音、西瓜视频等产品的多媒体业务,并向火山引擎的企业级客户提供技术服务。实验室成立以来,多篇论文入选国际顶会和旗舰期刊,并获得数项国际级技术赛事冠军、行业创新奖及最佳论文奖。


火山引擎是字节跳动旗下的云服务平台,将字节跳动快速发展过程中积累的增长方法、技术能力和工具开放给外部企业,提供云基础、视频与内容分发、大数据、人工智能、开发与运维等服务,帮助企业在数字化升级中实现持续增长。

2024-10-31 16:228627

评论

发布
暂无评论
发现更多内容

OWASP 定义的大模型应用最常见的10个关键安全问题

华为云PaaS服务小智

云计算 华为云 代码检查 华为开发者大会

StoneDB 开源社区月刊 | 202303期

StoneDB

MySQL 数据库 StoneDB

【HDC.Cloud 2023】华为云区块链分论坛内容值得再读!

华为云PaaS服务小智

云计算 软件开发 华为云 华为开发者大会2023

从零开始的知识图谱生活,构建一个百科知识图谱,完成基于Deepdive的知识抽取、基于ES的简单语义搜索、基于 REfO 的简单KBQA

汀丶人工智能

人工智能 自然语言处理 深度学习 知识图谱 智能搜索

春分将至,发版当时:StoneDB-5.7-v1.0.3版本正式发布!优化主备能力,提高主从同步性能,众多细节优化,快来体验~

StoneDB

版本更新 StoneDB

Region Failover在GreptimeDB 集群中的实现

Greptime 格睿科技

时序数据库 云原生数据库 failover region datanode

低代码平台之流程自动化测试

鲸品堂

低代码 企业号 7 月 PK 榜

数智浪潮!低代码开发平台扬帆迈向智慧诊疗领域新纪元!

不在线第一只蜗牛

人工智能 低代码 数智化 医疗健康

活动回顾 | StoneDB亮相2023数据技术嘉年华:增强AP、升级TP、信创替换,让万千DBA用得更省心,企业用得更省钱

StoneDB

数据技术 StoneDB 数据技术嘉年华

神州数码:我们和阿里云是市场和技术的共同体

新云力量

云计算 阿里云 神州数码

六月更新 | MeetingOps:让有效协作与高效会议共同发生在云端

CODING DevOps

终结对列存数据库的偏见!SAP HANA数据库的高效事务处理 | StoneDB学术分享会 #7 原创 读论文的StoneDB StoneDB

StoneDB

MySQL 数据库 StoneDB

入围 | StoneDB 顺利晋级“2022 年中国开源创新大赛”决赛,并荣获 “2022中国优秀开源项目/社区”奖项

StoneDB

MySQL 数据库 StoneDB

MySQL:我的从库竟是我自己!?

爱可生开源社区

消除企业信息孤岛的低代码开发平台

力软低代码开发平台

API全场景零码测试机器人——ATGen带来“超自动化”测试模式

华为云PaaS服务小智

云计算 华为云 华为开发者大会2023

低代码平台实用吗?有哪些大型企业在用低代码?

优秀

低代码

阿里云 EMAS & 魔笔:6 月产品动态

移动研发平台EMAS

阿里云 消息推送 移动开发 低代码开发 移动测试

提高开发质量的 5 个必要实践

互联网工科生

Java Code Review 开发质量

领域知识图谱-中式菜谱知识图谱:实现知识图谱可视化和知识库智能问答系统(KBQA)

汀丶人工智能

人工智能 深度学习 nlp 知识图谱 智能问答

MySQL生态的下一代HTAP数据库创新与实践 | StoneDB邀您参加第12届数据技术嘉年华(2023 DTC)

StoneDB

MySQL 数据库 StoneDB

超级App快速开发的一种创新模式

FinFish

小程序 小程序生态 超级app 小程序化

软件测试/测试开发丨Windows系统chromedriver安装与环境变量配置

测试人

软件测试 windows 环境变量 测试开发 chromedriver

国家电投江西公司与特斯联设立合资公司 发掘资本在新能源行业的潜在投资机遇

TE智库

Gluten + Celeborn: 让 Native Spark 拥抱 Cloud Native

阿里云大数据AI技术

后端 企业号 7 月 PK 榜 Push Shuffle

火山引擎夺得AIM2024大赛视频显著性预测赛道冠军_字节跳动_火山引擎_InfoQ精选文章