写点什么

火山引擎夺得 AIM2024 大赛视频显著性预测赛道冠军

  • 2024-10-31
    北京
  • 本文字数:1793 字

    阅读完需:约 6 分钟

大小:949.47K时长:05:24
火山引擎夺得AIM2024大赛视频显著性预测赛道冠军

近日,第 2024 届 ECCV 联合举办的 AIM Workshop 大赛公布比赛结果,在视频显著性预测赛道上,火山引擎多媒体实验室凭借自研的显著性检测算法获得冠军,技术能力达到行业领先水平。


参赛队伍

大赛背景


AIM (Advances in Image Manipulation) 2024 是新兴的计算机视觉国际竞赛,每年在模式识别和机器视觉顶级国际会议 ECCV 上举行。该比赛旨在鼓励学者和研究人员探索计算机视觉中图像分析、增强和恢复的新技术和方法,并且促进学术交流,在计算机视觉领域获得了广泛的关注和参与,吸引了众多高校和业界知名公司参加。


显著性预测任务旨在模拟人类视觉系统,预测图片/视频中人眼关注的区域,为下游各类计算机视觉任务提供引导和辅助信息。视频显著性预测赛道要求参赛者基于 1500 个视频 87w 帧共超过 4000 名用户的眼动追踪数据进行模型训练和验证,视频内容来自 youtube 和 vimeo 等网站,内容上涵盖了 PGC 长视频片段/UGC 短视频,语义上包含了游戏、动画、运动、vlog、电视节目等多个场景。最终排名由模型在验证集上的 AUC_J、CC、SIM、NSS 四项指标单项排名来加权得到,自研方案四项指标排名均取得第一,性能全面领先其他队伍方案。


视频显著性预测赛道结果


冠军算法介绍

显著性预测任务面临的主要挑战:

  • 眼动数据标注成本高,开源数据集规模有限,无法进行充分的预训练,因而容易导致模型鲁棒性不足。

  • 人眼的运动和聚焦既受到颜色、对比度等底层图像信号的刺激,也受到大脑感知系统对于场景的理解和推导的影响,因此对于语义复杂的场景,显著性预测难度大大增加

  • 随着观看时间的推移,显著区域会产生迁移,并具有一定延时性,需要对其时域特征进行良好的建模


此前方案大部分使用了基于 image 的骨干网络来进行特征提取,时域建模使用 LSTM/GRU 或者 3D 卷积来进行。团队沿用了 encoder-decoder 架构,整体结构如下图,输入一组 RGB 视频帧,最终输出显著性图谱。显著性图谱以灰度图表示,像素范围 0-255,数值越高代表显著性程度越高。其中,特征编码器为视觉编码器提取视频序列的多层级特征。特征解码器包含特征上采样模块、时序注意力模块、3D 卷积、上采样、2D 卷积、Sigmoid 等模块。



编码器的选择上,选取了针对 video 的视频基础模型 UMT(Unmasked Teacher)来作为 encoder,其网络使用预训练的 vision Transformer (ViT)。通过分别提取 ViT 不同块的输出(第 5,11,17,23),可得到不同层级的视频特征,这些特征包含丰富的底层细节和高层语义信息,同时也建模了视频不同帧间的时序关系。


解码器的设计上,采用了类似 U-Net 的分层上采样结构,在使用 3D 卷积对编码器特征进行时域降维的同时,进行不同尺度的空域上采样,并将不同层级的特征进行融合。此外,团队引入了时序注意力模块,以应对显著性的时域延迟和场景切换问题。这种设计不仅提升了模型对视频内容的理解能力,也为捕捉动态变化提供了有效支持。

数据处理方面,采用了基于视频内容的 train/val 划分策略,根据内容特性对数据集进行分组,然后按比例从每个组采样数据来组成最终的训练集。考虑到 UMT 的输入分辨率较小(224x224),对标签中的注视点信息进行了膨胀处理(dilate),减少其在下采样过程中的信息丢失,同时清除了离群点以加快收敛速度。

训练策略方面,通过 SIM 指标将数据划分为简单样本和困难样本,通过增加模型在困难样本上的损失权重,模型得以更加关注那些在训练过程中表现不佳的样本,有效提升了模型的整体性能和泛化能力。


总结

火山引擎多媒体实验室在视频显著性预测领域实现了突破性的进展,并获得了该赛道冠军。显著性预测技术的迭代升级可以帮助技术人员更为准确地预测用户观看行为,为用户观看体验的优化提供重要指引,也有助于推动视频行业向着更加智能化、高效化的方向发展。基于显著性预测的 ROI 编码和 ROI 区域增强方案已广泛应用于直播、点播及图片等内部业务场景,并通过火山引擎相关产品面向企业开放。


火山引擎多媒体实验室是字节跳动旗下的研究团队,致力于探索多媒体领域的前沿技术,参与国际标准化工作,其众多创新算法及软硬件解决方案已经广泛应用在抖音、西瓜视频等产品的多媒体业务,并向火山引擎的企业级客户提供技术服务。实验室成立以来,多篇论文入选国际顶会和旗舰期刊,并获得数项国际级技术赛事冠军、行业创新奖及最佳论文奖。


火山引擎是字节跳动旗下的云服务平台,将字节跳动快速发展过程中积累的增长方法、技术能力和工具开放给外部企业,提供云基础、视频与内容分发、大数据、人工智能、开发与运维等服务,帮助企业在数字化升级中实现持续增长。

2024-10-31 16:227166

评论

发布
暂无评论
发现更多内容

深入理解Python中的深拷贝与浅拷贝

我再BUG界嘎嘎乱杀

Python 编程语言 后端 开发语言 深拷贝与浅拷贝

通过考证深入了解TiDB

TiDB 社区干货传送门

社区活动 数据库架构选型 学习&认证&课程

使用 TiDB Vector 搭建 RAG 应用 - TiDB 文档问答小助手

TiDB 社区干货传送门

版本测评 新版本/特性解读 数据库前沿趋势

多点数千套集群实践:从“MySQL 又不是不能用,为什么选择 TiDB?”到“能用 TiDB 就不用 MySQL”

TiDB 社区干货传送门

实践案例 社区活动 管理与运维 TUG 话题探讨 数据库前沿趋势

Introducing Wallys DR5018M: Achieving Up to 1.5Gbps in Industrial WiFi6 Applications

wallyslilly

ipq5018

数据库与人工智能的关系

悦数图数据库

图数据库

TiDB Cloud x Datadog 集成案例

TiDB 社区干货传送门

应用适配

全球最大图片社交网站Pinterest为什么会放弃HBase而改用TiDB

TiDB 社区干货传送门

社区活动

聊聊缺陷逃逸率

老张

质量保障 缺陷管理 缺陷预防

analyze 采样率是怎么算出来的(v6.5.3)

TiDB 社区干货传送门

TiDB 源码解读 6.x 实践

天翼AI云电脑重塑未来工作方式的利器,邀您5月25日相聚福州!

编程猫

开启未来出行新纪元:44.8英寸超视界9K疾速屏智能座舱,高端车载显示技术引领用户体验新变革!

爱极客侠

NumPy 分割与搜索数组详解

EquatorCoco

数组 Numpy

TiDB x KubeBlocks 集成案例

TiDB 社区干货传送门

管理与运维

启航TiDB:调试环境搭建(vscode+wsl+pd)

TiDB 社区干货传送门

开发语言 TiDB 源码解读 应用适配

云计算技术架构揭秘与发展

Finovy Cloud

云计算 云计算架构

多点 x TiDB:在出海多云多活架构中,多点运维 TiDB 的实战分享

TiDB 社区干货传送门

实践案例 社区活动

【论文速读】|大语言模型是少样本测试员:探索基于LLM的通用漏洞复现

云起无垠

IPQ5322 and IPQ9531-Technical comparison and application analysis

wifi6-yiyi

ipq5322

FT-FMEA融合混沌演练,零售运营系统韧性架构在线验证实践

华为云开发者联盟

开发 华为云 华为云开发者联盟 确定性运维 企业号2024年5月PK榜

故障排查难?xpu_timer 让大模型训练无死角!

可信AI进展

如何通过店铺集群实现高效库存规划

第七在线

冲刺PCTA

TiDB 社区干货传送门

学习&认证&课程

记TiDB学习之路

TiDB 社区干货传送门

社区活动

聊聊Python多进程

我再BUG界嘎嘎乱杀

Python 编程 后端 多进程 开发语言

【TiDB 社区升级互助材料】TiDB 版本升级最全材料包

TiDB 社区干货传送门

版本升级

如何通过算法触达,高效唤醒沉睡会员?奇点云“向价值进发”直播回顾

先锋IT

2024年API趋势,哪些API将增加市场份额?

幂简集成

API

火山引擎夺得AIM2024大赛视频显著性预测赛道冠军_字节跳动_火山引擎_InfoQ精选文章