写点什么

Druid 在有赞的使用场景及应用实践

  • 2019-02-18
  • 本文字数:4015 字

    阅读完需:约 13 分钟

Druid 在有赞的使用场景及应用实践

一、Druid 介绍

Druid 是 MetaMarket 公司研发,专为海量数据集上的做高性能 OLAP (OnLine Analysis Processing)而设计的数据存储和分析系统,目前 Druid 已经在 Apache 基金会下孵化。Druid 的主要特性:


  • 交互式查询( Interactive Query ): Druid 的低延迟数据摄取架构允许事件在它们创建后毫秒内查询,因为 Druid 的查询延时通过只读取和扫描有必要的元素被优化。Druid 是列式存储,查询时读取必要的数据,查询的响应是亚秒级响应。

  • 高可用性( High Available ):Druid 使用 HDFS/S3 作为 Deep Storage,Segment 会在 2 个 Historical 节点上进行加载;摄取数据时也可以多副本摄取,保证数据可用性和容错性。

  • 可伸缩( Horizontal Scalable ):Druid 部署架构都可以水平扩展,增加大量服务器来加快数据摄取,以及保证亚秒级的查询服务

  • 并行处理( Parallel Processing ): Druid 可以在整个集群中并行处理查询

  • 丰富的查询能力( Rich Query ):Druid 支持 Scan、 TopN、 GroupBy、 Approximate 等查询,同时提供了 2 种查询方式:API 和 SQL


Druid 常见应用的领域:


  • 网页点击流分析

  • 网络流量分析

  • 监控系统、APM

  • 数据运营和营销

  • BI 分析/OLAP

二、为什么我们需要用 Druid

有赞作为一家 SaaS 公司,有很多的业务的场景和非常大量的实时数据和离线数据。在没有是使用 Druid 之前,一些 OLAP 场景的场景分析,开发的同学都是使用 SparkStreaming 或者 Storm 做的。用这类方案会除了需要写实时任务之外,还需要为了查询精心设计存储。带来问题是:开发的周期长,初期的存储设计很难满足需求的迭代发展,不可扩展。


在使用 Druid 之后,开发人员只需要填写一个数据摄取的配置,指定维度和指标,就可以完成数据的摄入。从上面描述的 Druid 特性中我们知道,Druid 支持 SQL,应用 APP 可以像使用普通 JDBC 一样来查询数据。通过有赞自研 OLAP 平台的帮助,数据的摄取配置变得更加简单方便,一个实时任务创建仅仅需要 10 来分钟,大大的提高了开发效率。

2.1 Druid 在有赞使用场景

  • 系统监控和 APM:有赞的监控系统(天网)和大量的 APM 系统都使用了 Druid 做数据分析

  • 数据产品和 BI 分析:有赞 SaaS 服务为商家提供了有很多数据产品,例如:商家营销工具,各类 BI 报表

  • 实时 OLAP 服务:Druid 为风控、数据产品等 C 端业务提供了实时 OLAP 服务

三、Druid 的架构


Druid 的架构是 Lambda 架构,分成实时层( Overlord、 MiddleManager )和批处理层( Broker 和 Historical )。主要的节点包括(PS: Druid 的所有功能都在同一个软件包中,通过不同的命令启动):


  • Coordinator 节点:负责集群 Segment 的管理和发布,并确保 Segment 在 Historical 集群中的负载均衡

  • Overlord 节点:Overlord 负责接受任务、协调任务的分配、创建任务锁以及收集、返回任务运行状态给客户端;在 Coordinator 节点配置 asOverlord,让 Coordinator 具备 Overlord 功能,这样减少了一个组件的部署和运维

  • MiddleManager 节点:负责接收 Overlord 分配的索引任务,创建新启动 Peon 实例来执行索引任务,一个 MiddleManager 可以运行多个 Peon 实例

  • Broker 节点:负责从客户端接收查询请求,并将查询请求转发给 Historical 节点和 MiddleManager 节点。Broker 节点需要感知 Segment 信息在集群上的分布

  • Historical 节点:负责按照规则加载非实时窗口的 Segment

  • Router 节点:可选节点,在 Broker 集群之上的 API 网关,有了 Router 节点 Broker 不在是单点服务了,提高了并发查询的能力

四、有赞 OLAP 平台的架构和功能解析

4.1 有赞 OLAP 平台的主要目标


  • 最大程度的降低实时任务开发成本:从开发实时任务需要写实时任务、设计存储,到只需填写配置即可完成实时任务的创建

  • 提供数据补偿服务,保证数据的安全:解决因为实时窗口关闭,迟到数据的丢失问题

  • 提供稳定可靠的监控服务:OLAP 平台为每一个 DataSource 提供了从数据摄入、Segment 落盘,到数据查询的全方位的监控服务


4.2 有赞 OLAP 平台架构



有赞 OLAP 平台是用来管理 Druid 和周围组件管理系统,OLAP 平台主要的功能:


  • Datasource 管理

  • Tranquility 配置和实例管理:OLAP 平台可以通过配置管理各个机器上 Tranquility 实例,扩容和缩容

  • 数据补偿管理:为了解决数据迟延的问题,OLAP 平台可以手动触发和自动触发补偿任务

  • Druid SQL 查询: 为了帮助开发的同学调试 SQL,OLAP 平台集成了 SQL 查询功能

  • 监控报警

4.2 Tranquility 实例管理

OLAP 平台采用的数据摄取方式是 Tranquility 工具,根据流量大小对每个 DataSource 分配不同 Tranquility 实例数量; DataSource 的配置会被推送到 Agent-Master 上,Agent-Master 会收集每台服务器的资源使用情况,选择资源丰富的机器启动 Tranquility 实例,目前只要考虑服务器的内存资源。同时 OLAP 平台还支持 Tranquility 实例的启停,扩容和缩容等功能。


4.3 解决数据迟延问题———离线数据补偿功能

流式数据处理框架都会有时间窗口,迟于窗口期到达的数据会被丢弃。如何保证迟到的数据能被构建到 Segment 中,又避免实时任务窗口长期不能关闭。我们研发了 Druid 数据补偿功能,通过 OLAP 平台配置流式 ETL 将原始的数据存储在 HDFS 上,基于 Flume 的流式 ETL 可以保证按照 Event 的时间,同一小时的数据都在同一个文件路径下。再通过 OLAP 平台手动或者自动触发 Hadoop-Batch 任务,从离线构建 Segment。



基于 Flume 的 ETL 采用了 HDFS Sink 同步数据,实现了 Timestamp 的 Interceptor,按照 Event 的时间戳字段来创建文件(每小时创建一个文件夹),延迟的数据能正确归档到相应小时的文件中。

4.4 冷热数据分离

随着接入的业务增加和长期的运行时间,数据规模也越来越大。Historical 节点加载了大量 Segment 数据,观察发现大部分查询都集中在最近几天,换句话说最近几天的热数据很容易被查询到,因此数据冷热分离对提高查询效率很重要。Druid 提供了 Historical 的 Tier 分组机制与数据加载 Rule 机制,通过配置能很好的将数据进行冷热分离。


首先将 Historical 群进行分组,默认的分组是"_default_tier",规划少量的 Historical 节点,使用 SATA 盘;把大量的 Historical 节点规划到 “hot” 分组,使用 SSD 盘。然后为每个 DataSource 配置加载 Rule :


  • rule1: 加载最近 30 天的 1 份 Segment 到 “hot” 分组;

  • rule2: 加载最近 180 天的 1 份 Segment 到 “_default_tier” 分组;

  • rule3: Drop 掉之前的数据(注:Rule 机制只影响 Historical 加载 Segment,Drop 掉的 Segment 在 HDFS 上任有备份)


{"type":"loadByPeriod","tieredReplicants":{"hot":1}, "period":"P30D"} {"type":"loadByPeriod","tieredReplicants":{"_default_tier":1}, "period":"P180D"} {"type":"dropForever"}
复制代码


提高 "hot"分组集群的 druid.server.priority 值(默认是 0),热数据的查询都会落到 “hot” 分组。


4.5 监控与报警

Druid 架构中的各个组件都有很好的容错性,单点故障时集群依然能对外提供服务:Coordinator 和 Overlord 有 HA 保障;Segment 是多副本存储在 HDFS/S3 上;同时 Historical 加载的 Segment 和 Peon 节点摄取的实时部分数据可以设置多副本提供服务。同时为了能在节点/集群进入不良状态或者达到容量极限时,尽快的发出报警信息。和其他的大数据框架一样,我们也对 Druid 做了详细的监控和报警项,分成了 2 个级别:


  • 基础监控

  • 包括各个组件的服务监控、集群水位和状态监控、机器信息监控

  • 业务监控

  • 业务监控包括:实时任务创建、数据摄取 TPS、消费迟延、持久化相关、查询 RT/QPS 等的关键指标,有单个 DataSource 和全局的 2 种不同视图;同时这些监控项都有设置报警项,超过阈值进行报警提醒。业务指标的采集是大部分是通过 Druid 框架自身提供的 Metrics 和 Alerts 信息,然后流入到 Kafka/OpenTSDB 等组件,通过流数据分析获得我们想要的指标。

五、挑战和未来的展望

5.1 数据摄取系统

目前比较常用的数据摄取方案是:KafkaIndex 和 Tranquility 。我们采用的是 Tranquility 的方案,目前 Tranquility 支持了 Kafka 和 Http 方式摄取数据,摄取方式并不丰富;Tranquility 也是 MetaMarket 公司开源的项目,更新速度比较缓慢,不少功能缺失,最关键的是监控功能缺失,我们不能监控到实例的运行状态,摄取速率、积压、丢失等信息。


目前我们对 Tranquility 的实例管理支持启停,扩容缩容等操作,实现的方式和 Druid 的 MiddleManager 管理 Peon 节点是一样的。把 Tranquility 或者自研摄取工具转换成 Yarn 应用或者 Docker 应用,就能把资源调度和实例管理交给更可靠的调度器来做。

5.2 Druid 的维表 JOIN 查询

Druid 目前并不没有支持 JOIN 查询,所有的聚合查询都被限制在单 DataSource 内进行。但是实际的使用场景中,我们经常需要几个 DataSource 做 JOIN 查询才能得到所需的结果。这是我们面临的难题,也是 Druid 开发团队遇到的难题。

5.3 整点查询 RT 毛刺问题

对于 C 端的 OLAP 查询场景,RT 要求比较高。由于 Druid 会在整点创建当前小时的 Index 任务,如果查询正好落到新建的 Index 任务上,查询的毛刺很大,如下图所示:



我们已经进行了一些优化和调整,首先调整 warmingPeriod 参数,整点前启动 Druid 的 Index 任务;对于一些 TPS 低,但是 QPS 很高的 DataSource ,调大 SegmentGranularity,大部分 Query 都是查询最近 24 小时的数据,保证查询的数据都在内存中,减少新建 Index 任务的,查询毛刺有了很大的改善。尽管如此,离我们想要的目标还是一定的差距,接下去我们去优化一下源码。

5.4 历史数据自动 Rull-Up

现在大部分 DataSource 的 Segment 粒度( SegmentGranularity )都是小时级的,存储在 HDFS 上就是每小时一个 Segment。当需要查询时间跨度比较大的时候,会导致 Query 很慢,占用大量的 Historical 资源,甚至出现 Broker OOM 的情况。如果创建一个 Hadoop-Batch 任务,把一周前(举例)的数据按照天粒度 Rull-Up 并且 重新构建 Index,应该会在压缩存储和提升查询性能方面有很好的效果。


2019-02-18 08:005558
用户头像

发布了 41 篇内容, 共 83853 次阅读, 收获喜欢 66 次。

关注

评论

发布
暂无评论
发现更多内容

《企业级业务架构设计方法论与实践》解读

javaba韩老师

业务架构 TOGAF

【笔记】第四章-第三讲 业务流程与产品文档

Geek_娴子

第五周作业

正午看星星

闲鱼UI快速变形利器--擎天柱

闲鱼技术

谈谈职业发展中的“收入”问题

一笑

28天写作

第五周作业

郭郭

第四章作业

正午看星星

小谈 Java 单元测试

xcbeyond

Java 单元测试 28天写作

产品经理 - 第四章作业

Geek_971380

javascript中的闭包closure详解

程序那些事

JavaScript nodejs 闭包 程序那些事 closure

花了一个月,整理了这份2021金三银四Java面试/学习指南,1500+题全面解析

Java 架构 面试

第四章 _ 第二次作业 _ 流程图

Weiyung

分享一个务实派CEO的理念和实践

boshi

经验分享 七日更 28天写作

产品经理训练营 -- 第五周作业

Denny-xi

产品经理 产品经理训练

产品经理训练营——Week 04

柚子君~

产品经理训练营

第四章_第一次作业_用例

Weiyung

c语言学习笔记

白白

C语言

翻译:《实用的Python编程》03_03_Error_checking

codists

Python

有效括号入门题:使用栈能够解决超过一半的「有效括号」问题 ...

宫水三叶的刷题日记

面试 LeetCode 数据结构与算法

为何你进不了大厂?

冰河

程序员 面试 程序人生 经验分享 冰河技术

(28DW-S8-Day11) 小数据与在线教育

mtfelix

28天写作 小数据 因材施教 用户分析

第5次作业

Geek_娴子

首获阿里offer主动分享面经:Java面试清单+程序员复习笔记(2021春招必看)

比伯

Java 编程 程序员 架构 面试

从“天地一体”到“移动组网”,中国量子通信产业是如何“炼成”的?

脑极体

没有数据的AI是空中楼阁

罗森内里大伊布

大数据 保险 保险科技 水滴公司

产品经理训练营第五、六周作业

happy-黑皮

产品经理训练营

产品经理训练营——Week 05

柚子君~

产品经理训练营

关于微服务的一点理解

风翱

微服务 开发

靠速度说话!你还不够了解的“新基建闪电侠”

白洞计划

产品经理训练营 - 第五周作业

玖玖

摄影方法分享

飞飞飞

摄影

Druid 在有赞的使用场景及应用实践_架构_有赞技术_InfoQ精选文章