写点什么

数据传输效率实现百倍飞跃,Apache Doris 现已支持 Arrow Flight SQL 协议

  • 2024-04-12
    北京
  • 本文字数:7934 字

    阅读完需:约 26 分钟

大小:1.22M时长:07:07
数据传输效率实现百倍飞跃,Apache Doris现已支持 Arrow Flight SQL 协议

近年来,随着数据科学、数据湖分析等场景的兴起,对数据读取和传输速度提出更高的要求。而 JDBC/ODBC 作为与数据库交互的主流标准,在应对大规模数据读取和传输时显得力不从心,无法满足高性能、低延迟等数据处理需求。为提供更高效的数据传输方案,Apache Doris 在 2.1 版本中基于 Arrow Flight SQL 协议实现了高速数据传输链路使得数据传输性能实现百倍飞跃

基于 Arrow Flight SQL 的高速数据传输链路

在 Apache Doris 中,查询结果以列存格式的 Block 组织。在之前版本中,如需将这些数据通过 MySQL Client 或 JDBC/ODBC 驱动传输至目标客户端时,需要先将 Block 序列化为行存格式的 Bytes,如果目标客户端是类似 Pandas 的列存数据科学组件或列存数据库,还需将行存格式的 Bytes 再反序列化为列存格式,而序列化/反序列化操作是一个非常耗时的过程。


Apache Doris 2.1 版本 中,我们基于 Arrow Flight SQL **构建了高速数据传输链路,它支持主流语言通过 SQL 从 Doris 高速读取大规模数据,极大提升了其他系统与 Apache Doris 间数据传输效率。**若目标客户端同样支持 Arrow 列存格式,整体传输过程将完全避免序列化/反序列化操作,彻底消除因此带来时间及性能损耗。此外,依赖于 Arrow Flight 多节点和多核架构特性,实现了数据传输的完全并行化,极大提高了数据吞吐能力。


以 Python 读取 Apache Doris 中数据为例,Apache Doris 先将列存的 Block 快速转换为列存的 Arrow RecordBatch,随后在 Python 客户端中,将 Arrow RecordBatch 转换为同样列存的 Pandas DataFrame 中,转换速度极快,保障了数据传输的时效性。



不仅如此,Arrow Flight SQL 还提供了通用的 JDBC 驱动,支持与同样遵循 Arrow Flight SQL 协议的数据库无缝交互,这不仅增强了 Apache Doris 的兼容性,还为其拓展了更广泛的应用场景。

性能测试

为了直观地展示引入 Arrow Flight SQL 后对数据传输性能的提升效果,我们特地对 Python 使用 Pymysql、Pandas 以及 Arrow Flight SQL 这三种方式读取 Apache Doris 中数据的耗时进行了对比。测试数据集如下:



分别使用 Pymysql、Pandas、Arrow Flight SQL 对不同类型数据的传输进行了测试,测试结果如下:



从测试结果来看,Arrow Flight SQL 在所有列类型的传输上都展现出了显著的性能优势。**在绝大多数读取场景中,Arrow Flight SQL 的性能提升超 20 倍,而在部分场景中甚至实现了百倍的性能飞跃,**为大数据处理和分析提供了强有力的保障。


使用介绍

Apache Doris 支持 Arrow Flight SQL 后,我们得以利用 Python 的 ADBC Driver 轻松连接 Doris,实现数据的极速读取。接下来,我们将使用 Python(版本要求 >= 3.9)的 ADBC Driver 执行一系列常见的数据库语法操作,包括 DDL、DML、设置 Session 变量以及 Show 语句等。

01 安装 Library

Library 被发布在 PyPI,可通过以下方式简单安装:


pip install adbc_driver_managerpip install adbc_driver_flightsql
复制代码


在代码中import 以下模块/库来使用已安装的 Library:


import adbc_driver_managerimport adbc_driver_flightsql.dbapi as flight_sql
复制代码

02 连接 Doris

创建与 Doris Arrow Flight SQL 服务交互的客户端。需提供 Doris FE 的 Host、Arrow Flight Port 、登陆用户名以及密码,并进行以下配置。


修改 Doris FE 和 BE 的配置参数:


  • 修改fe/conf/fe.confarrow_flight_sql_port 为一个可用端口,如 9090。

  • 修改 be/conf/be.confarrow_flight_port 为一个可用端口,如 9091。


假设 Doris 实例中 FE 和 BE 的 Arrow Flight SQL 服务将分别在端口 9090 和 9091 上运行,且 Doris 用户名/密码为“user”/“pass”,那么连接过程如下所示:


conn = flight_sql.connect(uri="grpc://127.0.0.1:9090", db_kwargs={            adbc_driver_manager.DatabaseOptions.USERNAME.value: "user",            adbc_driver_manager.DatabaseOptions.PASSWORD.value: "pass",        })cursor = conn.cursor()
复制代码


连接完成后,可以通过 SQL 使返回的 Cursor 与 Doris 交互,执行例如建表、获取元数据、导入数据、查询等操作。

03 建表与获取元数据

将 Query 传递给 cursor.execute()函数,执行建表与获取元数据操作:


cursor.execute("DROP DATABASE IF EXISTS arrow_flight_sql FORCE;")print(cursor.fetchallarrow().to_pandas())
cursor.execute("create database arrow_flight_sql;")print(cursor.fetchallarrow().to_pandas())
cursor.execute("show databases;")print(cursor.fetchallarrow().to_pandas())
cursor.execute("use arrow_flight_sql;")print(cursor.fetchallarrow().to_pandas())
cursor.execute("""CREATE TABLE arrow_flight_sql_test ( k0 INT, k1 DOUBLE, K2 varchar(32) NULL DEFAULT "" COMMENT "", k3 DECIMAL(27,9) DEFAULT "0", k4 BIGINT NULL DEFAULT '10', k5 DATE, ) DISTRIBUTED BY HASH(k5) BUCKETS 5 PROPERTIES("replication_num" = "1");""")print(cursor.fetchallarrow().to_pandas())
cursor.execute("show create table arrow_flight_sql_test;")print(cursor.fetchallarrow().to_pandas())
复制代码


如果 StatusResult 返回 0 ,则说明 Query 执行成功(这样设计的原因是为了兼容 JDBC)。


  StatusResult0            0
StatusResult0 0
Database0 __internal_schema1 arrow_flight_sql.. ...507 udf_auth_db
[508 rows x 1 columns]
StatusResult0 0
StatusResult0 0 Table Create Table0 arrow_flight_sql_test CREATE TABLE `arrow_flight_sql_test` (\n `k0`...
复制代码

04 导入数据

执行 INSERT INTO,向所创建表中导入少量测试数据:


cursor.execute("""INSERT INTO arrow_flight_sql_test VALUES        ('0', 0.1, "ID", 0.0001, 9999999999, '2023-10-21'),        ('1', 0.20, "ID_1", 1.00000001, 0, '2023-10-21'),        ('2', 3.4, "ID_1", 3.1, 123456, '2023-10-22'),        ('3', 4, "ID", 4, 4, '2023-10-22'),        ('4', 122345.54321, "ID", 122345.54321, 5, '2023-10-22');""")print(cursor.fetchallarrow().to_pandas())
复制代码


如下所示则证明导入成功:


  StatusResult0            0
复制代码


如果需要导入大批量数据到 Doris,可以使用 pydoris 执行 Stream Load 来实现。

05 执行查询

接着对上面导入的表进行查询查询,包括聚合、排序、Set Session Variable 等操作。


cursor.execute("select * from arrow_flight_sql_test order by k0;")print(cursor.fetchallarrow().to_pandas())
cursor.execute("set exec_mem_limit=2000;")print(cursor.fetchallarrow().to_pandas())
cursor.execute("show variables like \"%exec_mem_limit%\";")print(cursor.fetchallarrow().to_pandas())
cursor.execute("select k5, sum(k1), count(1), avg(k3) from arrow_flight_sql_test group by k5;")print(cursor.fetchallarrow().to_pandas())
复制代码


结果如下所示:


   k0            k1    K2                k3          k4          k50   0       0.10000    ID       0.000100000  9999999999  2023-10-211   1       0.20000  ID_1       1.000000010           0  2023-10-212   2       3.40000  ID_1       3.100000000      123456  2023-10-223   3       4.00000    ID       4.000000000           4  2023-10-224   4  122345.54321    ID  122345.543210000           5  2023-10-22
[5 rows x 6 columns]
StatusResult0 0
Variable_name Value Default_Value Changed0 exec_mem_limit 2000 2147483648 1
k5 Nullable(Float64)_1 Int64_2 Nullable(Decimal(38, 9))_30 2023-10-22 122352.94321 3 40784.2144033331 2023-10-21 0.30000 2 0.500050005
[2 rows x 5 columns]
复制代码

06 完整代码

# Doris Arrow Flight SQL Test
# step 1, library is released on PyPI and can be easily installed.# pip install adbc_driver_manager# pip install adbc_driver_flightsqlimport adbc_driver_managerimport adbc_driver_flightsql.dbapi as flight_sql
# step 2, create a client that interacts with the Doris Arrow Flight SQL service.# Modify arrow_flight_sql_port in fe/conf/fe.conf to an available port, such as 9090.# Modify arrow_flight_port in be/conf/be.conf to an available port, such as 9091.conn = flight_sql.connect(uri="grpc://127.0.0.1:9090", db_kwargs={ adbc_driver_manager.DatabaseOptions.USERNAME.value: "root", adbc_driver_manager.DatabaseOptions.PASSWORD.value: "", })cursor = conn.cursor()
# interacting with Doris via SQL using Cursordef execute(sql): print("\n### execute query: ###\n " + sql) cursor.execute(sql) print("### result: ###") print(cursor.fetchallarrow().to_pandas())
# step3, execute DDL statements, create database/table, show stmt.execute("DROP DATABASE IF EXISTS arrow_flight_sql FORCE;")execute("show databases;")execute("create database arrow_flight_sql;")execute("show databases;")execute("use arrow_flight_sql;")execute("""CREATE TABLE arrow_flight_sql_test ( k0 INT, k1 DOUBLE, K2 varchar(32) NULL DEFAULT "" COMMENT "", k3 DECIMAL(27,9) DEFAULT "0", k4 BIGINT NULL DEFAULT '10', k5 DATE, ) DISTRIBUTED BY HASH(k5) BUCKETS 5 PROPERTIES("replication_num" = "1");""")execute("show create table arrow_flight_sql_test;")

# step4, insert intoexecute("""INSERT INTO arrow_flight_sql_test VALUES ('0', 0.1, "ID", 0.0001, 9999999999, '2023-10-21'), ('1', 0.20, "ID_1", 1.00000001, 0, '2023-10-21'), ('2', 3.4, "ID_1", 3.1, 123456, '2023-10-22'), ('3', 4, "ID", 4, 4, '2023-10-22'), ('4', 122345.54321, "ID", 122345.54321, 5, '2023-10-22');""")

# step5, execute queries, aggregation, sort, set session variableexecute("select * from arrow_flight_sql_test order by k0;")execute("set exec_mem_limit=2000;")execute("show variables like \"%exec_mem_limit%\";")execute("select k5, sum(k1), count(1), avg(k3) from arrow_flight_sql_test group by k5;")
# step6, close cursor cursor.close()
复制代码

大规模数据传输场景应用示例

01 Python

在 Python 中,通过 ADBC Driver 连接到已支持 Arrow Flight SQL 的 Doris 后,可以使用多种 ADBC API 从 Doris 加载 Clickbench 数据集到 Python。具体如下:


#!/usr/bin/env python# -*- coding: utf-8 -*-
import adbc_driver_managerimport adbc_driver_flightsql.dbapi as flight_sqlimport pandasfrom datetime import datetime
my_uri = "grpc://0.0.0.0:`fe.conf_arrow_flight_port`"my_db_kwargs = { adbc_driver_manager.DatabaseOptions.USERNAME.value: "root", adbc_driver_manager.DatabaseOptions.PASSWORD.value: "",}sql = "select * from clickbench.hits limit 1000000;"
# PEP 249 (DB-API 2.0) API wrapper for the ADBC Driver Manager.def dbapi_adbc_execute_fetchallarrow(): conn = flight_sql.connect(uri=my_uri, db_kwargs=my_db_kwargs) cursor = conn.cursor() start_time = datetime.now() cursor.execute(sql) arrow_data = cursor.fetchallarrow() dataframe = arrow_data.to_pandas() print("\n##################\n dbapi_adbc_execute_fetchallarrow" + ", cost:" + str(datetime.now() - start_time) + ", bytes:" + str(arrow_data.nbytes) + ", len(arrow_data):" + str(len(arrow_data))) print(dataframe.info(memory_usage='deep')) print(dataframe)
# ADBC reads data into pandas dataframe, which is faster than fetchallarrow first and then to_pandas.def dbapi_adbc_execute_fetch_df(): conn = flight_sql.connect(uri=my_uri, db_kwargs=my_db_kwargs) cursor = conn.cursor() start_time = datetime.now() cursor.execute(sql) dataframe = cursor.fetch_df() print("\n##################\n dbapi_adbc_execute_fetch_df" + ", cost:" + str(datetime.now() - start_time)) print(dataframe.info(memory_usage='deep')) print(dataframe)
# Can read multiple partitions in parallel.def dbapi_adbc_execute_partitions(): conn = flight_sql.connect(uri=my_uri, db_kwargs=my_db_kwargs) cursor = conn.cursor() start_time = datetime.now() partitions, schema = cursor.adbc_execute_partitions(sql) cursor.adbc_read_partition(partitions[0]) arrow_data = cursor.fetchallarrow() dataframe = arrow_data.to_pandas() print("\n##################\n dbapi_adbc_execute_partitions" + ", cost:" + str(datetime.now() - start_time) + ", len(partitions):" + str(len(partitions))) print(dataframe.info(memory_usage='deep')) print(dataframe)
dbapi_adbc_execute_fetchallarrow()dbapi_adbc_execute_fetch_df()dbapi_adbc_execute_partitions()
复制代码


执行结果如下(忽略重复输出),从 Doris 加载 100 万行 105 列 780M 的 Clickbench 数据集,仅用时 3s


################## dbapi_adbc_execute_fetchallarrow, cost:0:00:03.548080, bytes:784372793, len(arrow_data):1000000<class 'pandas.core.frame.DataFrame'>RangeIndex: 1000000 entries, 0 to 999999Columns: 105 entries, CounterID to CLIDdtypes: int16(48), int32(19), int64(6), object(32)memory usage: 2.4 GBNone        CounterID   EventDate               UserID            EventTime              WatchID  JavaEnable                                              Title  GoodEvent  ...  UTMCampaign  UTMContent  UTMTerm  FromTag  HasGCLID          RefererHash              URLHash  CLID0          245620  2013-07-09  2178958239546411410  2013-07-09 19:30:27  8302242799508478680           1  OWAProfessionov — Мой Круг (СВАО Интернет-магазин          1  ...                                                    0 -7861356476484644683 -2933046165847566158     0999999       1095  2013-07-03  4224919145474070397  2013-07-03 14:36:17  6301487284302774604           0  @дневники Sinatra (ЛАДА, цена для деталли кто ...          1  ...                                                    0  -296158784638538920  1335027772388499430     0
[1000000 rows x 105 columns]
################## dbapi_adbc_execute_fetch_df, cost:0:00:03.611664################## dbapi_adbc_execute_partitions, cost:0:00:03.483436, len(partitions):1################## low_level_api_execute_query, cost:0:00:03.523598, stream.address:139992182177600, rows:-1, bytes:784322926, len(arrow_data):1000000################## low_level_api_execute_partitions, cost:0:00:03.738128streams.size:3, 1, -1
复制代码

02 JDBC

Arrow Flight SQL 协议的开源 JDBC 驱动兼容标准的 JDBC API,可用于大多数 BI 工具通过 JDBC 访问 Doris,并支持高速传输 Apache Arrow 数据。使用方法与通过 MySQL 协议的 JDBC 驱动连接 Doris 类似,只需将链接 URL 中的jdbc:mysql 换成 jdbc:arrow-flight-sql,查询返回的结果依然是 JDBC 的 ResultSet 数据结构。


import java.sql.Connection;import java.sql.DriverManager;import java.sql.ResultSet;import java.sql.Statement;
Class.forName("org.apache.arrow.driver.jdbc.ArrowFlightJdbcDriver");String DB_URL = "jdbc:arrow-flight-sql://0.0.0.0:9090?useServerPrepStmts=false" + "&cachePrepStmts=true&useSSL=false&useEncryption=false";String USER = "root";String PASS = "";
Connection conn = DriverManager.getConnection(DB_URL, USER, PASS);Statement stmt = conn.createStatement();ResultSet resultSet = stmt.executeQuery("show tables;");while (resultSet.next()) { String col1 = resultSet.getString(1); System.out.println(col1);}
resultSet.close();stmt.close();conn.close();
复制代码

03 JAVA

与 Python 类似,JAVA 也可以直接创建 ADBC Client 读取 Doris 中数据。在这过程中,首先需获取 FlightInfo,随后连接每一个 Endpoint 拉取数据。


// method oneAdbcStatement stmt = connection.createStatement()stmt.setSqlQuery("SELECT * FROM " + tableName)// executeQuery, two steps:// 1. Execute Query and get returned FlightInfo;// 2. Create FlightInfoReader to sequentially traverse each Endpoint;QueryResult queryResult = stmt.executeQuery()

// method twoAdbcStatement stmt = connection.createStatement()stmt.setSqlQuery("SELECT * FROM " + tableName)// Execute Query and parse each Endpoint in FlightInfo, and use the Location and Ticket to construct a PartitionDescriptorpartitionResult = stmt.executePartitioned();partitionResult.getPartitionDescriptors()//Create ArrowReader for each PartitionDescriptor to read dataArrowReader reader = connection2.readPartition(partitionResult.getPartitionDescriptors().get(0).getDescriptor()))
复制代码

04 Spark

对于 Spark,除了可以通过 JDBC 和 JAVA 方式连接 Flight SQL Server 外,还可以使用开源的 Spark-Flight-Connector ,该组件支持 Spark 作为 Client 读写 Flight SQL Server。其原因是 Arrow 数据格式与 Doris 中的 Block 数据格式的转换速度非常快,**相较于 CSV 与 Block 格式之间的转换,其速度提升了 10 倍之多,**并且 Arrow 数据格式对 Map、Array 等复杂类型的支持也更加出色。

结束语

目前,已有多家社区企业用户验证并使用 Arrow Flight SQL 从 Doris 加载数据到 Python、Spark、Flink,测试结果说明,该方式的读取速度相较于以往有了显著的提升。未来,Apache Doris 计划支持 Arrow Flight SQL 写入,届时由主流编程语言构建的系统均可借助 ADBC 客户端来读写 Doris,实现高速的数据交互;并计划利用 Arrow Flight 的并行化能力实现多 BE 并行读取,还可以借助 Arrow Flight SQL 实现 Doris 和 Doris、 Spark 和 Doris 之间的联邦查询。

2024-04-12 17:5911507
用户头像
李冬梅 加V:busulishang4668

发布了 1104 篇内容, 共 716.7 次阅读, 收获喜欢 1253 次。

关注

评论

发布
暂无评论
发现更多内容

Kubernetes集群调度增强之超容量扩容

京东科技开发者

Kubernetes k8s 集群 企业号 4 月 PK 榜 超容量扩容

安装Zookeeper和Kafka集群

Java你猿哥

Java kafka zookeeper SSM框架 Java工程师

Gradio:快速构建你的webApp

AIWeker

Python 三周年连更 Gradio

挑战 30 天学完 Python:Day9 条件语句

MegaQi

Python 挑战30天学完Python 三周年连更

浅谈离线数据倾斜

京东科技开发者

hive sql 数据倾斜 Spark java 企业号 4 月 PK 榜

如何用scrum敏捷工具做迭代规划及迭代执行。

顿顿顿

Scrum Sprint 敏捷开发管理工具 敏捷工具 迭代规划

火山引擎云原生数据仓库ByteHouse技术白皮书V1.0 (Ⅲ)

字节跳动数据平台

数据仓库 云原生 白皮书 数据仓库服务 企业号 4 月 PK 榜

“淄”味当道,工赋十足

Openlab_cosmoplat

开源社区 双碳

阅读完synchronized和ReentrantLock的源码后,我竟发现其完全相似

Java 源码 synchronized ReentrantLock

火山引擎 DataLeap下Notebook系列文章一:技术选型之路

字节跳动数据平台

notebook 数据研发 企业号 4 月 PK 榜

最近,我们做了一次“实景”容灾演练

云布道师

阿里云

清单推荐:常见的研发效能度量指标(科学管理版)

LigaAI

研发管理 技术管理 效能度量 研发效能度量 企业号 4 月 PK 榜

从源码角度深入解析Callable接口

华为云开发者联盟

后端 开发 华为云 华为云开发者联盟 企业号 4 月 PK 榜

带你一同认识和使用JPA框架进行开发你的应用服务

Java你猿哥

Java SSM框架 jpa Java工程师

剖析多利熊业务如何基于分布式架构实践稳定性建设

百度Geek说

分布式 稳定性 多利熊 企业号 4 月 PK 榜

4 月 22 日丨【云数据库技术沙龙】技术进化,让数据更智能

NineData

MySQL 数据库 程序员 开发者 Clickhouse

字节面试官:你没有高并发、性能调优经验,为什么录取你?

Java 高并发 性能调优

火山引擎DataTester:让企业“无代码”也能用起来的A/B实验平台

字节跳动数据平台

AB testing实战 无代码 A/B 测试 企业号 4 月 PK 榜 企业增长

华为云新一代iPaaS全域融合集成平台全新升级

华为云开发者联盟

数据库 后端 华为云 华为云开发者联盟 企业号 4 月 PK 榜

从零学习SDK(7)如何打包SDK

MobTech袤博科技

面试了个985毕业的大佬,回答“性能调优”题时表情令我毕生难忘

Java 性能优化 性能调优

接口设计文档的12个注意点

Java 后端开发 接口设计

Scrum敏捷研发和项目管理

顿顿顿

Scrum 敏捷开发 敏捷开发流程 leangoo 敏捷开发管理工具

JDK8到JDK17有哪些吸引人的新特性?

京东科技开发者

Java jdk8 jdk17 java 8 的新特性 企业号 4 月 PK 榜

白活了!谷歌架构师10年心血汇成的《24种设计模式》,这才是正解

Java 设计模式

全量通过,华为云GaussDB首批完成信通院全密态数据库评测

华为云开发者联盟

数据库 后端 华为云 华为云开发者联盟 企业号 4 月 PK 榜

Kurator v0.3.0版本发布!助力企业实现多云异构管理

华为云开发者联盟

开源 后端 华为云 华为云开发者联盟 企业号 4 月 PK 榜

Java中线程的6种状态详解(NEW、RUNNABLE、BLOCKED、WAITING、TIMED_WAITING、TERMINATED)

共饮一杯无

Java 线程 线程状态 三周年连更

网络编程懒人入门(十五):外行也能读懂的网络硬件设备功能原理速成

JackJiang

网络编程 即时通讯 IM

【架构与设计】常见微服务分层架构的区别和落地实践

京东科技开发者

架构 微服务 DDD 分层架构 企业号 4 月 PK 榜

Apifox 更新 | WebSocket 接口调试功能上线!

Apifox

程序员 开发工具 Apifox API 接口工具

数据传输效率实现百倍飞跃,Apache Doris现已支持 Arrow Flight SQL 协议_数据湖仓_SelectDB_InfoQ精选文章