写点什么

使用 Spark Streaming 进行情感分析

  • 2016-05-24
  • 本文字数:2054 字

    阅读完需:约 7 分钟

这里将使用 Twitter 流式数据,它符合所有所需:持续而且无止境的数据源。

Spark Streaming

Spark Streaming 在电子书《手把手教你学习Spark》第六章有详细介绍,这里略过Streaming API 的详细介绍,直接进行程序开发 。

程序开发设置部分

程序开发起始部分需要做好准备工作。

复制代码
val config = new SparkConf().setAppName("twitter-stream-sentiment")
val sc = new SparkContext(config)
sc.setLogLevel("WARN")
val ssc = new StreamingContext(sc, Seconds(5))
System.setProperty("twitter4j.oauth.consumerKey", "consumerKey")
System.setProperty("twitter4j.oauth.consumerSecret", "consumerSecret")
System.setProperty("twitter4j.oauth.accessToken", accessToken)
System.setProperty("twitter4j.oauth.accessTokenSecret", "accessTokenSecret")
val stream = TwitterUtils.createStream(ssc, None)

这里创建一个 Spark Context sc,设置日志级别为 WARN 来消除 Spark 生成的日志。使用sc创建 Streaming Contextssc,然后设置 Twitter 证书来获得 Twitter 网站数据。

Twitter 上现在的趋势是什么?

很容易的能够找到任意给定时刻的 Twitter 趋势,仅仅需要计算数据流每个标签的数目。让我们看下 Spark 如何实现这个操作的。

复制代码
val tags = stream.flatMap { status =>
status.getHashtagEntities.map(_.getText)
}
tags.countByValue()
.foreachRDD { rdd =>
val now = org.joda.time.DateTime.now()
rdd
.sortBy(_._2)
.map(x => (x, now))
.saveAsTextFile(s"~/twitter/$now")
}

首先从 Tweets 获取标记,并计算标记的数量,按数量排序,然后持久化结果。我们基于前面的结果建立一个监控面板来跟踪趋势标签。作者的同事就可以创建一个广告标记(campaigns),并吸引更多的用户。

分析 Tweets

现在我们想增加一个功能来获得用户主要感兴趣的主题集。为了这个目的我们想对 Tweets 的大数据和食物两个不相关的主题进行情感分析。

有几种 API 可以在 Tweets 上做情感分析,但是作者选择斯坦福自然语言处理组开发的库来抽取相关情感。
build.sbt文件中增加相对应的依赖。

复制代码
libraryDependencies += "edu.stanford.nlp" % "stanford-corenlp" % "3.5.1"
libraryDependencies += "edu.stanford.nlp" % "stanford-corenlp" % "3.5.1" classifier "models"

现在,我们通过 Streaming 过滤一定的哈希标签,只选择感兴趣的 Tweets,如下所示:

复制代码
val tweets = stream.filter {t =>
val tags = t.getText.split(" ").filter(_.startsWith("#")).map(_.toLowerCase)
tags.contains("#bigdata") && tags.contains("#food")
}

得到 Tweets 上所有标签,然后标记出#bigdata 和 #food 两个标签。
接下来定一个函数从 Tweets 抽取相关的情感:

def detectSentiment(message: String): SENTIMENT_TYPE然后对 detectSentiment 进行测试以确保其可以工作:

复制代码
it("should detect not understood sentiment") {
detectSentiment("") should equal (NOT_UNDERSTOOD)
}
it("should detect a negative sentiment") {
detectSentiment("I am feeling very sad and frustrated.") should equal (NEGATIVE)
}
it("should detect a neutral sentiment") {
detectSentiment("I'm watching a movie") should equal (NEUTRAL)
}
it("should detect a positive sentiment") {
detectSentiment("It was a nice experience.") should equal (POSITIVE)
}
it("should detect a very positive sentiment") {
detectSentiment("It was a very nice experience.") should equal (VERY_POSITIVE)
}

完整列子如下:

复制代码
val data = tweets.map { status =>
val sentiment = SentimentAnalysisUtils.detectSentiment(status.getText)
val tags = status.getHashtagEntities.map(_.getText.toLowerCase)
(status.getText, sentiment.toString, tags)
}

data 中包含相关的情感。

和 SQL 协同进行分析

现在作者想把情感分析的数据存储在外部数据库,为了后续可以使用 SQL 查询。
具体操作如下:

复制代码
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._
data.foreachRDD { rdd =>
rdd.toDF().registerTempTable("sentiments")
}

将 Dstream 转换成 DataFrame,然后注册成一个临时表,其他喜欢使用 SQL 的同事就可以使用不同的数据源啦。

sentiment 表可以被任意查询,也可以使用 Spark SQL 和其他数据源(比如,Cassandra 数据等)进行交叉查询。
查询 DataFrame 的列子:

sqlContext.sql("select * from sentiments").show()## 窗口操作

Spark Streaming 的窗口操作可以进行回溯数据,这在其他流式引擎中并没有。
为了使用窗口函数,你需要 checkpoint 流数据,具体详情见 http://spark.apache.org/docs/latest/streaming-programming-guide.html#checkpointing
简单的一个窗口操作:

复制代码
tags
.window(Minutes(1))
. (...)

结论

此列子虽然简单,但是其可以使用 Spark 解决实际问题。我们可以计算 Twitter 上主题趋势。

2016-05-24 17:455571
用户头像

发布了 43 篇内容, 共 31.4 次阅读, 收获喜欢 7 次。

关注

评论

发布
暂无评论
发现更多内容

死锁检测实现

C++后台开发

后台开发 线程 多线程 死锁 C++开发

流程图布局在项目中的实践

相续心

开发者有话说|一名普通大专学历开发者的成长

彭发红

清览题库--C语言程序设计第五版编程题解析(2)

吉师职业混子

9月月更

Javaweb核心之注解开发Servlet

楠羽

Servlet 笔记 9月月更

算法基础(四)| 前缀和算法及模板详解

timerring

算法 9月月更

闲着刷题

吉师职业混子

9月月更

跟着卷卷龙一起学Camera--内存池浅析01

卷卷龙

ISP 9月月更

关爱2700多万听障者,手语服务助力无声交流

HarmonyOS SDK

手语

openEuler资源利用率提升之道 03:rubik混部引擎简介

openEuler

Linux 开源 cpu 操作系统 openEuler

基于微服务的应用性能监控方案

穿过生命散发芬芳

9月月更 微服务监控

新书上市|听说你翻开数学书就眼睛疼?

图灵教育

数学 科普 教育

在家学习如何保持高度自律

大数据搬运工

学习方法

SQL是什么?它能做什么?

乌龟哥哥

9月月更

NestOS应用案例:容器化部署OpenStack

openEuler

架构 openEuler 开源操作系统 OpenStack

面向深度神经网络的特定领域架构

俞凡

深度学习 架构 TPU

【jvm】通过JDBC为例谈谈双亲委派模型的破坏

石臻臻的杂货铺

JVM 9月月更

【云原生 | 从零开始学Kubernetes】七、Kubernetes的命名空间

泡泡

Docker 云计算 容器 云原生 9月月更

脑机接口照进现实:5位脑科学家带来的最新启示

脑极体

架构实战营-模块一作业

Geek_92ba6f

leetcode 669. Trim a Binary Search Tree 修剪二叉搜索树 (简单)

okokabcd

LeetCode 算法与数据结构

探索AI技术应用场景

felix

产业落地 AI探索 API接口 模型管理

每日算法刷题Day1-隐式转换与精度丢失

timerring

算法题 9月月更

深入了解之链接器与加载器

邱学喆

加载器 链接器 ELF文件结构

2022-09-24:以下go语言代码输出什么?A:1;B:3;C:13;D:7。 package main import ( “fmt“ “io/ioutil“ “net/

福大大架构师每日一题

golang 福大大 选择题

大数据调度平台Airflow(八):Airflow分布式集群搭建及测试

Lansonli

airflow 9月月更

工赋开发者社区 |【数智化】数字化工厂规划与建设方案

工赋开发者社区

如何在笔记本上安装openEuler 22.03 LTS

openEuler

开源 操作系统 openEuler 安装部署

新书上市|听说你翻开数学书就眼睛疼?

图灵社区

数学 科普 教育

Identity and Access Management

冯亮

DevOps security AWS Cloud

【编程基础】正则表达式基本使用及在Python中使用正则表达式匹配内容

迷彩

Python 正则表达式 9月月更

使用Spark Streaming进行情感分析_语言 & 开发_侠天_InfoQ精选文章