2天时间,聊今年最热的 Agent、上下文工程、AI 产品创新等话题。2025 年最后一场~ 了解详情
写点什么

使用 Spark Streaming 进行情感分析

  • 2016-05-24
  • 本文字数:2054 字

    阅读完需:约 7 分钟

这里将使用 Twitter 流式数据,它符合所有所需:持续而且无止境的数据源。

Spark Streaming

Spark Streaming 在电子书《手把手教你学习Spark》第六章有详细介绍,这里略过Streaming API 的详细介绍,直接进行程序开发 。

程序开发设置部分

程序开发起始部分需要做好准备工作。

复制代码
val config = new SparkConf().setAppName("twitter-stream-sentiment")
val sc = new SparkContext(config)
sc.setLogLevel("WARN")
val ssc = new StreamingContext(sc, Seconds(5))
System.setProperty("twitter4j.oauth.consumerKey", "consumerKey")
System.setProperty("twitter4j.oauth.consumerSecret", "consumerSecret")
System.setProperty("twitter4j.oauth.accessToken", accessToken)
System.setProperty("twitter4j.oauth.accessTokenSecret", "accessTokenSecret")
val stream = TwitterUtils.createStream(ssc, None)

这里创建一个 Spark Context sc,设置日志级别为 WARN 来消除 Spark 生成的日志。使用sc创建 Streaming Contextssc,然后设置 Twitter 证书来获得 Twitter 网站数据。

Twitter 上现在的趋势是什么?

很容易的能够找到任意给定时刻的 Twitter 趋势,仅仅需要计算数据流每个标签的数目。让我们看下 Spark 如何实现这个操作的。

复制代码
val tags = stream.flatMap { status =>
status.getHashtagEntities.map(_.getText)
}
tags.countByValue()
.foreachRDD { rdd =>
val now = org.joda.time.DateTime.now()
rdd
.sortBy(_._2)
.map(x => (x, now))
.saveAsTextFile(s"~/twitter/$now")
}

首先从 Tweets 获取标记,并计算标记的数量,按数量排序,然后持久化结果。我们基于前面的结果建立一个监控面板来跟踪趋势标签。作者的同事就可以创建一个广告标记(campaigns),并吸引更多的用户。

分析 Tweets

现在我们想增加一个功能来获得用户主要感兴趣的主题集。为了这个目的我们想对 Tweets 的大数据和食物两个不相关的主题进行情感分析。

有几种 API 可以在 Tweets 上做情感分析,但是作者选择斯坦福自然语言处理组开发的库来抽取相关情感。
build.sbt文件中增加相对应的依赖。

复制代码
libraryDependencies += "edu.stanford.nlp" % "stanford-corenlp" % "3.5.1"
libraryDependencies += "edu.stanford.nlp" % "stanford-corenlp" % "3.5.1" classifier "models"

现在,我们通过 Streaming 过滤一定的哈希标签,只选择感兴趣的 Tweets,如下所示:

复制代码
val tweets = stream.filter {t =>
val tags = t.getText.split(" ").filter(_.startsWith("#")).map(_.toLowerCase)
tags.contains("#bigdata") && tags.contains("#food")
}

得到 Tweets 上所有标签,然后标记出#bigdata 和 #food 两个标签。
接下来定一个函数从 Tweets 抽取相关的情感:

def detectSentiment(message: String): SENTIMENT_TYPE然后对 detectSentiment 进行测试以确保其可以工作:

复制代码
it("should detect not understood sentiment") {
detectSentiment("") should equal (NOT_UNDERSTOOD)
}
it("should detect a negative sentiment") {
detectSentiment("I am feeling very sad and frustrated.") should equal (NEGATIVE)
}
it("should detect a neutral sentiment") {
detectSentiment("I'm watching a movie") should equal (NEUTRAL)
}
it("should detect a positive sentiment") {
detectSentiment("It was a nice experience.") should equal (POSITIVE)
}
it("should detect a very positive sentiment") {
detectSentiment("It was a very nice experience.") should equal (VERY_POSITIVE)
}

完整列子如下:

复制代码
val data = tweets.map { status =>
val sentiment = SentimentAnalysisUtils.detectSentiment(status.getText)
val tags = status.getHashtagEntities.map(_.getText.toLowerCase)
(status.getText, sentiment.toString, tags)
}

data 中包含相关的情感。

和 SQL 协同进行分析

现在作者想把情感分析的数据存储在外部数据库,为了后续可以使用 SQL 查询。
具体操作如下:

复制代码
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._
data.foreachRDD { rdd =>
rdd.toDF().registerTempTable("sentiments")
}

将 Dstream 转换成 DataFrame,然后注册成一个临时表,其他喜欢使用 SQL 的同事就可以使用不同的数据源啦。

sentiment 表可以被任意查询,也可以使用 Spark SQL 和其他数据源(比如,Cassandra 数据等)进行交叉查询。
查询 DataFrame 的列子:

sqlContext.sql("select * from sentiments").show()## 窗口操作

Spark Streaming 的窗口操作可以进行回溯数据,这在其他流式引擎中并没有。
为了使用窗口函数,你需要 checkpoint 流数据,具体详情见 http://spark.apache.org/docs/latest/streaming-programming-guide.html#checkpointing
简单的一个窗口操作:

复制代码
tags
.window(Minutes(1))
. (...)

结论

此列子虽然简单,但是其可以使用 Spark 解决实际问题。我们可以计算 Twitter 上主题趋势。

2016-05-24 17:455544
用户头像

发布了 43 篇内容, 共 31.3 次阅读, 收获喜欢 7 次。

关注

评论

发布
暂无评论
发现更多内容

架构师日记-从技术角度揭露电商大促备战的奥秘 | 京东云技术团队

京东科技开发者

京东云 企业号 6 月 PK 榜 京东618

Amazon CodeWhisperer 编程助手试用总结

Hanson

在 Go 中如何使用 database/sql 来操作数据库

江湖十年

MySQL 后端 Go 语言

京东购物车分页方案探索和落地 | 京东云技术团队

京东科技开发者

京东云 京东商城 企业号 6 月 PK 榜 6 月 优质更文活动

KaiwuDB 受邀亮相山东省数字化转型论坛

KaiwuDB

数字化转型 KaiwuDB

【差分隐私】基本原理与入门级应用 | 京东云技术团队

京东科技开发者

京东云 差分隐私算法 企业号 6 月 PK 榜

PoseiSwap的趋势性如何体现?

鳄鱼视界

2023-06-11:redis中,如何在100个亿URL中快速判断某URL是否存在?

福大大架构师每日一题

redis 福大大架构师每日一题

Docker化Spring Boot应用

越长大越悲伤

Docker Docker Swarm

C语言编程—递归

芯动大师

递归 C语言 6 月 优质更文活动

一些对程序员有用的网站

小万哥

程序员 程序人生 运维 前端 后端

Service Mesh的主要实现原理

穿过生命散发芬芳

Service Mesh 6 月 优质更文活动

Sparkplug 规范中涉及 MQTT Broker 的 5 个关键概念

EMQ映云科技

通信协议 mqtt 工业物联网

STM32通过ADC1读取光敏电阻的值转换光照强度

DS小龙哥

6 月 优质更文活动

软件测试 | Selenium基础

测吧(北京)科技有限公司

测试

软件测试 | Selenium-RC工作原理

测吧(北京)科技有限公司

测试

构建系列之新一代利器Esbuild(上)

江湖修行

cli 构建 esbuild 前端‘’

想要更好地理解大模型架构?从计算参数量快速入手

Baihai IDP

人工智能 Transformer 大模型 白海科技 企业号 6 月 PK 榜

短视频云端批量混剪实操指南

阿里云CloudImagine

云计算 短视频 视频云 云剪辑

【Netty】「萌新入门」(一)Hello, World!

sidiot

Java 后端 Netty 6 月 优质更文活动

HummerRisk获中国开源创新大赛优秀奖

HummerCloud

开源 云安全

企业作业数字化转型,选择平台要重点考虑哪几点?选哪个平台?

轶天下事

深度学习应用篇-计算机视觉-OCR光学字符识别[7]:OCR综述、常用CRNN识别方法、DBNet、CTPN检测方法等、评估指标、应用场景

汀丶人工智能

人工智能 深度学习 计算机视觉 OCR 6 月 优质更文活动

C语言编程—递归

夜猫西街

深度学习应用篇-计算机视觉-视频分类[8]:时间偏移模块(TSM)、TimeSformer无卷积视频分类方法、注意力机制

汀丶人工智能

人工智能 深度学习 计算机视觉 视频分类 6 月 优质更文活动

Flink实现高效实时处理百万级数据:实践与优化

xfgg

flink 6 月 优质更文活动

企业作业数字化转型需要什么工具,华为ISDP有话说

轶天下事

“全球金牌课程”8月5-6日 · CSM认证在线周末班【提前报名特惠】CST导师亲授

ShineScrum

敏捷教练 Scrum Master CSM 敏捷项目管理

微服务之负载均衡

Disaster

微服务

使用Spark Streaming进行情感分析_语言 & 开发_侠天_InfoQ精选文章