一. DC-ASGD 算法介绍
此前,和大家也一起讨论过 DC-ASGD 算法,详细可见:https://zhuanlan.zhihu.com/p/80978479
DC-ASGD 算法主要解决的问题是:异步的随机梯度下降法(ASGD)在深度学习模型的训练中会存在 delayed gradients 的问题,就是当一个 worker 向参数 server 端提交它算出的梯度时,server 端其实已经被其它 worker 更新过好多次了。主要解决方案是利用梯度项的泰勒展开式去近似逼近 loss 函数的 Hessian 矩阵。
具体算法:
二. DC-ASGD 算法 tensorflow 实现
那么如何在 tensorflow 中实现 dc-asgd 算法呢?在上一篇文章中,我们讨论过 tensorflow 中 Optimizer 类的源码解析,其实就是为该篇文章做铺垫。接下来我们就具体分析下 Optimizer 的子类-DelayCompensatedGradientDescentOptimizer 类。
"""DelayCompensatedGradientDescentOptimizer for TensorFlow."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.training import optimizer
from tensorflow.python.training import training_ops
GATE_NONE = 0
GATE_OP = 1
GATE_GRAPH = 2
class DelayCompensatedGradientDescentOptimizer(optimizer.Optimizer):
"""Optimizer that implements the DelayCompensatedGradientDescent algorithm.
See [](https://arxiv.org/abs/1609.08326)
([](https://arxiv.org/pdf/1609.08326.pdf)).
"""
def __init__(self, learning_rate, variance_parameter=2.0, num_workers=1,
use_locking=False, name="DelayCompensatedGradientDescentOptimizer"):
"""Construct a gradient descent optimizer with delay compensation.
It is cricial to note the `num_workers` in constructor and `worker_index` in
`minimize()` and `apply_gradients()`.
Contrast to AdaMaxamOptimizer, the sparse implementation of this algorithm
(used when the gradient is an IndexedSlices object, typically because of
`tf.gather` or an embedding lookup in the forward pass) only updates
variable slices and corresponding `shadow_t` term when that part of
the variable was used in the forward pass. This means that the sparse
behavior is contrast to the dense behavior (similar to some momentum
implementations which ignore momentum unless a variable slice was actually
used).
Args:
learning_rate: A Tensor or a floating point value. The learning rate.
variance_parameter: A Tensor or a floating point value.
The variance control parameter.
num_workers: A int value. The number of workers.
use_locking: If True use locks for update operations.
name: Optional name for the operations created when applying gradients.
Defaults to "DelayCompensatedGradientDescentOptimizer".
"""
num_workers = self._call_if_callable(num_workers)
if num_workers <= 0:
raise ValueError("num_workers must be positive: %s" % num_workers)
super(DelayCompensatedGradientDescentOptimizer, self).__init__(use_locking, name)
self._lr = learning_rate
self._lambda = variance_parameter
self._num_workers = num_workers
self._learning_rate_tensor = None
self._lambda_tensor = None
self._use_locking = use_locking
def _create_slots(self, var_list):
for index in range(self._num_workers):
for v in var_list:
self._zeros_slot(v, "shadow_{0}".format(index), self._name)
def _prepare(self):
lr = self._call_if_callable(self._lr)
lambda_ = self._call_if_callable(self._lambda)
self._learning_rate_tensor = ops.convert_to_tensor(lr, name="learning_rate")
self._lambda_tensor = ops.convert_to_tensor(lambda_, name="lambda")
def _apply_dense(self, grad, var):
shadow = self.get_slot(var, "shadow_{0}".format(self.worker_index))
return training_ops.apply_delay_compensated_gradient_descent(
var,
math_ops.cast(self._learning_rate_tensor, grad.dtype.base_dtype),
grad,
math_ops.cast(self._lambda_tensor, grad.dtype.base_dtype),
shadow,
use_locking=self._use_locking).op
def _resource_apply_dense(self, grad, var):
shadow = self.get_slot(var, "shadow_{0}".format(self.worker_index))
return training_ops.resource_apply_delay_compensated_gradient_descent(
var.handle,
math_ops.cast(self._learning_rate_tensor, grad.dtype.base_dtype),
grad,
math_ops.cast(self._lambda_tensor, grad.dtype.base_dtype),
shadow.handle,
use_locking=self._use_locking)
def _apply_sparse_shared(self, grad, var, indices):
shadow = self.get_slot(var, "shadow_{0}".format(self.worker_index))
# if shadow is None:
# raise ValueError("None shadow with index = " + str(self.worker_index) + " and var = " + str(var))
lambda_ = math_ops.cast(self._lambda_tensor, var.dtype.base_dtype)
lr = math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype)
var_slice = array_ops.gather(var, indices)
shadow_slice = array_ops.gather(shadow, indices)
var_scaled_g_values = lr * (grad + lambda_ * grad * grad * (var_slice - shadow_slice))
var_t = state_ops.scatter_add(var, indices, -var_scaled_g_values, use_locking=self._use_locking)
with ops.control_dependencies([var_t]):
shadow_t = state_ops.assign(shadow, var_t)
return control_flow_ops.group(*[var_t, shadow_t])
def _apply_sparse(self, grad, var):
return self._apply_sparse_shared(
grad.values, var, grad.indices)
def _resource_apply_sparse(self, grad, var, indices):
return self._apply_sparse_shared(
grad, var, indices)
def minimize(self, loss, global_step=None, var_list=None,
gate_gradients=GATE_OP, aggregation_method=None,
colocate_gradients_with_ops=False, name=None,
grad_loss=None, worker_index=0):
self.worker_index = worker_index
return super(DelayCompensatedGradientDescentOptimizer, self).minimize(loss=loss, global_step=global_step,
var_list=var_list,
gate_gradients=gate_gradients,
aggregation_method=aggregation_method,
colocate_gradients_with_ops=colocate_gradients_with_ops,
name=name,
grad_loss=grad_loss)
def apply_gradients(self, grads_and_vars, global_step=None, name=None, worker_index=0):
self.worker_index = worker_index
return super(DelayCompensatedGradientDescentOptimizer, self).apply_gradients(grads_and_vars=grads_and_vars,
global_step=global_step, name=name)
_create_slots 函数用来创建一些额外的参数,这里创建的是每一个 worker 上的每一个 variable 所对应的备份变量 shadow。_prepare 函数用来准备优化器的常规超参数。
我们重点关注下_apply_sparse 函数,该函数调用的是_apply_sparse_shared 函数,参数 grad 的数据类型是 IndexedSlices 类型,那么什么是 IndexedSlices 类型呢?这里 Slice 的意思是从 Tensor 里面取特定的一些下标得到原先 tensor 变量的一部分,比如说原来的 tensor 的 shape 是[10,10],取下标[0]得到一个[10]的 Tensor,这个 Tensor 就是原 Tensor 的一个 Slice。那么 IndexedSlices 其实就是一堆 Slices 和它们所对应的下标(也就是 Index)。在梯度更新过程中,如果只需要更新某几行的梯度值,就可以将梯度表示成这种数据结构,来节省计算资源。
所以_apply_sparse_shared 函数参数传入的是 grad.values 和 grad.indices,分别表示特定行的梯度值和行的下标。在计算梯度项时:var_scaled_g_values = lr *(grad + lambda_ * grad * grad *(var_slice - shadow_slice)),也需要先求出特定行的 var_slice 和 shadow_slice。然后根据求出的梯度项更新参数时:var_t = state_ops.scatter_add(var, indices,-var_scaled_g_values, use_locking=self._use_locking),也是在特定的那些行(根据 indices 确定的)做更新。
当这一轮的参数做完更新后,需要将当前时刻的变量 var_t 备份一下,以用于下一时刻的参数更新:shadow_t = state_ops.assign(shadow, var_t)。最后将 var_t, shadow_t 的更新操作放进 control_flow_ops 中。
我们举一个简单的 example 来说明一下这种 IndexedSlices 类型的梯度是怎么更新的:
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import ops
from tensorflow.python.ops import variables
from tensorflow.python.training import adam
if __name__ == '__main__':
value_a = np.ones(shape=[3, 10])
indices_a = np.array([0, 3, 8])
dense_shape_a = [10, 10]
grad_slices_a = ops.IndexedSlices(constant_op.constant(value_a), constant_op.constant(indices_a),
constant_op.constant(dense_shape_a))
var_np = np.ones(shape=[10, 10])
var0 = variables.RefVariable(var_np)
opt = adam.AdamOptimizer()
update = opt.apply_gradients(zip([grad_slices_a], [var0]))
# variables.global_variables_initializer().run()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
print("initial variable is:", sess.run(var0))
sess.run(update)
print("update 1 time variable is:", sess.run(var0))
输出:
initial variable is: [[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]
update 1 time variable is: [[0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ]
[0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ]
[0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ]]
可以很清楚地看到,执行一次梯度更新之后,只有 0,3,8 这三行的变量值发生了改变。这就是使用 IndexedSlices 类型的优势。
另外,training_ops.apply_delay_compensated_gradient_descent 这个函数是在 tensorflow/core/kernels/training_ops.cc 中实现的,核心代码如下:
template <typename T>
struct ApplyDelayCompensatedGradientDescent<CPUDevice, T> {
void operator()(const CPUDevice& d, typename TTypes<T>::Flat var,
typename TTypes<T>::ConstScalar lr,
typename TTypes<T>::ConstFlat grad,
typename TTypes<T>::ConstScalar variance,
typename TTypes<T>::Flat shadow) {
var.device(d) -= lr() * (grad + variance() * grad * grad * (var - shadow));
shadow.device(d) = var;
}
};
其实除了这两个文件之外,还需要写一下注册 ApplyDelayCompensatedGradientDescent 的 OP 接口,这里就不详细讲解了。
三.如何使用 DC-ASGD 算法
在 tensorflow 源码目录中修改或添加完 dc-asgd 算法的几个相关文件后,需要重新编译一下 tensorflow。编译成功后,就可以愉快地使用 dc-asgd 算法的接口啦。
下面给大家举一个使用 DelayCompensatedGradientDescentOptimizer 优化器的分布式训练 demo:
from __future__ import print_function, absolute_import, division
import tensorflow as tf
tf.app.flags.DEFINE_string("ps_hosts", "localhost:2222", "ps hosts")
tf.app.flags.DEFINE_string("worker_hosts", "localhost:2223,localhost:2224", "worker hosts")
tf.app.flags.DEFINE_string("job_name", "worker", "'ps' or'worker'")
tf.app.flags.DEFINE_integer("task_index", 0, "Index of task within the job")
tf.app.flags.DEFINE_integer("num_workers", 2, "Number of workers")
tf.app.flags.DEFINE_boolean("is_sync", False, "using synchronous training or not")
FLAGS = tf.app.flags.FLAGS
def model(images):
"""Define a simple mnist classifier"""
net = tf.layers.dense(images, 500, activation=tf.nn.relu)
net = tf.layers.dense(net, 500, activation=tf.nn.relu)
net = tf.layers.dense(net, 10, activation=None)
return net
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train = x_train.reshape(-1, 784).astype('float32')
x_test = x_test.reshape(-1, 784).astype('float32')
x_train /= 255
x_test /= 255
def get_batch(image, label, batch_size=32, training=True):
df = tf.data.Dataset.from_tensor_slices((image, label))
if training:
df = df.repeat(10).shuffle(buffer_size=1000)
df = df.batch(batch_size).prefetch(batch_size)
iterator = df.make_one_shot_iterator()
batch_x, batch_y = iterator.get_next()
return batch_x, batch_y
def main(_):
ps_hosts = FLAGS.ps_hosts.split(",")
worker_hosts = FLAGS.worker_hosts.split(",")
# create the cluster configured by `ps_hosts' and 'worker_hosts'
cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})
# create a server for local task
server = tf.train.Server(cluster, job_name=FLAGS.job_name, task_index=FLAGS.task_index)
train_batch_x, train_batch_y = get_batch(x_train, y_train)
test_batch_x, test_batch_y = get_batch(x_test, y_test, training=False)
if FLAGS.job_name == "ps":
server.join() # ps hosts only join
elif FLAGS.job_name == "worker":
# workers perform the operation
# ps_strategy = tf.contrib.training.GreedyLoadBalancingStrategy(FLAGS.num_ps)
# Note: tf.train.replica_device_setter automatically place the paramters (Variables)
# on the ps hosts (default placement strategy: round-robin over all ps hosts, and also
# place multi copies of operations to each worker host
with tf.device(tf.train.replica_device_setter(worker_device="/job:worker/task:%d" % FLAGS.task_index,
cluster=cluster)):
logits = model(train_batch_x)
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=tf.one_hot(train_batch_y, 10)))
# The StopAtStepHook handles stopping after running given steps.
hooks = [tf.train.StopAtStepHook(last_step=10000)]
global_step = tf.train.get_or_create_global_step()
#optimizer = tf.train.AdamOptimizer(learning_rate=1e-04)
optimizer = tf.contrib.opt.DelayCompensatedGradientDescentOptimizer(learning_rate=0.001)
if FLAGS.is_sync:
# asynchronous training
# use tf.train.SyncReplicasOptimizer wrap optimizer
# ref: https://www.tensorflow.org/api_docs/python/tf/train/SyncReplicasOptimizer
optimizer = tf.train.SyncReplicasOptimizer(optimizer, replicas_to_aggregate=FLAGS.num_workers,
total_num_replicas=FLAGS.num_workers)
# create the hook which handles initialization and queues
hooks.append(optimizer.make_session_run_hook((FLAGS.task_index == 0)))
train_op = optimizer.minimize(loss, global_step=global_step)
# The MonitoredTrainingSession takes care of session initialization,
# restoring from a checkpoint, saving to a checkpoint, and closing when done
# or an error occurs.
with tf.train.MonitoredTrainingSession(master=server.target,
is_chief=(FLAGS.task_index == 0),
checkpoint_dir="./checkpoint_dir",
hooks=hooks) as mon_sess:
while not mon_sess.should_stop():
# mon_sess.run handles AbortedError in case of preempted PS.
_, ls, step = mon_sess.run([train_op, loss, global_step])
if step % 100 == 0:
print("Train step %d, loss: %f" % (step, ls))
if __name__ == "__main__":
tf.app.run()
启动命令是:
python dc_asgd_exp.py --ps_hosts=localhost:2222 --worker_hosts=localhost:2224 --job_name=ps --task_index=0
python dc_asgd_exp.py --ps_hosts=localhost:2222 --worker_hosts=localhost:2224 --job_name=worker --task_index=0
参考文献:
https://zhuanlan.zhihu.com/p/80978479
https://zhuanlan.zhihu.com/p/87348147
https://www.zhihu.com/question/277403551
https://zhuanlan.zhihu.com/p/35083779
本文转载自 Alex-zhai 知乎账号。
原文链接:https://www.zhihu.com/people/alex-zhai-19/posts
更多内容推荐
04| 实战 5 步(下):怎么建立估计 10 万 + 软文点击率的模型?
机器学习是怎么建立模型的?
2021-09-06
Github 惊现高星神作,两份算法宝典让你横扫大厂算法面试题
有些小伙伴可能会有疑惑,为什么面试总喜欢问算法与数据结构问题,这是有原因的
2020-10-19
【内存操作函数内功修炼】memcpy + memmove + memcmp + memset(四)
前面我们学习了 strcpy 和 strncpy,用于拷贝字符串的库函数,但是,假设我们需要拷贝其他类型的数据呢?比如 浮点型、整型、结构体 ?
2022-09-21
如何用 Python 构建机器学习模型?
本文,我们将通过 Python 语言包,来构建一些机器学习模型。
深度学习基础入门篇 [四]:激活函数介绍:tanh、sigmoid、ReLU、PReLU、ELU、softplus、softmax、swish 等
深度学习基础入门篇[四]:激活函数介绍:tanh、sigmoid、ReLU、PReLU、ELU、softplus、softmax、swish等
2023-04-12
Process Function 应用
2020-10-01
分布式 tensorflow 源码解读 3:lookup.index_table_from_tensor
推荐排序dnn模型中经常会用一些特别稀疏的id特征
Spark RDD 实战:Action 原理和实战、Spark 广播变量原理和使用
2020-12-03
分布式 tensorflow 源码解读 2:MonitoredTrainingSession
MonitoredTrainingSession是tensorflow管理分布式训练中一个使用很广泛的API
企业级别的 tensorflow 分布式训练架构总结
美团点评训练Wide & Deep Learning模型
Tensorflow 中 ring all-reduce 的实现
那如何在Tensorflow代码中实现ring all-reduce呢
ImageNet Training in Minutes
缩短DNN的训练时间是一个热点
24|Stable Diffusion:最热门的开源 AI 画图工具
Stable Diffusion:最热门的开源AI画图工具
2023-05-05
tensorflow optimizer 源码阅读笔记
一直对tf中的自动求导机制比较好奇,它内部到底是怎么做梯度的反向传播的呢?
Python 多重继承问题之 MRO 和 C3 算法
Python多继承之MRO和C3算法学习笔记
2020-06-29
23|OpenClip:让我们搞清楚图片说了些什么
OpenClip:让我们搞清楚图片说了些什么?
2023-04-28
04|新时代模型性能大比拼,GPT-3 到底胜在哪里?
这一讲我们一起使用 Fasttext、T5-small 和 T5-base 这三个预训练模型,做零样本分类测试。
2023-03-27
最短路径问题(无负边值)——Dijkstra 算法
Dijkstra算法使用了广度优先搜索解决了赋权有向图或无向图的单源最短路径问题。算法采用了贪心策略,分阶段的求解这个问题,这篇文章,我们进行详细的介绍。
2020-07-20
算法题每日一练:矩阵置零
给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地算法 。
2023-05-01
我的算法学习之路
一点儿经验,希望对想学算法的你有帮助
2021-01-29
推荐阅读
11|VAE 系列:如何压缩图像给 GPU 腾腾地方
2023-08-09
opencv 目标检测之 canny 算法
2023-06-26
12|实战项目(二):动手训练一个你自己的扩散模型
2023-08-11
Karpathy 又整活儿了!一天训练出 GPT-2、成本还骤降 100 倍,网友:dream 老黄把价格再打下来
如何通过 KV 稀疏实现对 vLLM 的 1.5 倍加速
27|模型工程(三):低成本领域模型方案,小团队怎么做大模型?
2023-10-20
大语言模型的预训练 [1]: 基本概念原理、神经网络的语言模型、Transformer 模型原理详解、Bert 模型原理介绍| 社区征文
2023-07-17
电子书
大厂实战PPT下载
换一换 孙岩 | 京东到家 架构师
代铁 | 北京银行 软件开发中心副总经理
姚立 | 字节跳动 架构前端平台架构 团队负责人
评论