写点什么

DeepMind 推出 Agent57,在所有雅达利游戏上超越人类

  • 2020-05-19
  • 本文字数:1512 字

    阅读完需:约 5 分钟

DeepMind推出Agent57,在所有雅达利游戏上超越人类

谷歌旗下DeepMind的研究人员开发了一款名为Agent57的强化学习(RL)系统,该系统在街机学习环境下的全部 57 款雅达利 2600 游戏中得分都超过了人类。Agent57 是第一个在这种最难的游戏上全面超越人类的系统。


研究人员在 arXiv 上发表的一篇论文中介绍了这个系统以及一系列的实验。Agent57 基于的是 DeepMind 之前关于永不放弃(NGU)算法强化学习的工作成果。其底层架构由一个神经网络组成,该网络编码一组策略,范围从探索到利用,使用自适应机制在整个培训过程中对不同的策略进行优先级排序。另外的改进是,通过增加训练的稳定性来解决长期的可信度赋值问题。通过这些改进,Agent57 在所有游戏中的得分中值都高于 NGU。此外,在之前的人工智能系统根本不能玩的游戏中,Agent57 的得分表现也优于人类。


尽管 DeepMind 的大部分研究都集中玩游戏的 AI 上,包括像AlphaGo研究的经典棋盘游戏,据该团队他们的说法,其目标是“使用游戏作为系统开发的垫脚石,让 AI 应对更广泛的挑战。”研究人员认为雅达利 2600 系列游戏是用于评定 RL 表现的一个很好的基准,因为每款游戏都足以代表一个实际的挑战,而整个系列包含非常多品种,提供足够的多样化。尽管经过多年的研究,深度 Q-Networks (Deep Q-Networks,首个在多款游戏中实现人类水平表现的系统)也进行了多项改进,“所有深度强化学习代理始终未能在四款游戏中得分:蒙特祖玛的复仇(Montezuma’s Revenge)、陷阱(Pitfall)、飞向太空(Solaris)和滑雪(Skiing)。”若要玩好这些游戏,需要系统解决 RL 中的两个难题:探索-利用问题和长期信度分配问题。


探索-利用权衡是行为人在选择已经学习的策略和探索新的策略之间所必须达到的平衡。像《陷阱》和《蒙提祖玛的复仇》这样的游戏要求玩家在获得任何奖励之前先探索游戏“世界”。Agent57 的前身 NGU 使用了一种通过检测新的游戏状态而产生内在奖励的方式。于是,它学习了一套探索和利用政策。Agent57 使用一个多臂 bandits 元控制器改进了这一点,该控制器在训练期间调整了探索-利用平衡。


当代理采取的行动有延迟的报酬时,就会出现长期信度分配问题。例如,在滑雪游戏中,直到游戏结束才会给出分数,因此系统无法轻松学习游戏开始后不久所采取的动作的效果。Agent57 对 NGU 的改进是将 agent 的神经网络分为两部分:一部分学习预测行为的内在奖励,另一部分学习预测行为的外在奖励。研究人员发现,这“显著”提高了训练的稳定性。


DeepMind 团队将 Agent57 的性能与其他几个系统进行了比较,包括 NGU、循环回放分布式DQN (R2D2)和 MuZero。尽管 MuZero 在整个套件中拥有最高的平均值和中位数得分,但有一些游戏它“根本”就不会玩,得到的分数并不比随机策略好多少。Agent57 在最难的 20%的游戏中获得了最好的分数,并且是唯一在所有游戏中都超过人类表现的系统。


骇客新闻关于 Agent57 的讨论中,一名用户指出:


整个进化过程看起来越来越像 20 世纪 80 年代的专家系统,人们不断地添加越来越多的复杂性来“解决”一个特定的问题。对于强化学习,开始的时候,是简单而优雅的 DQN,而现在新的算法看起来像一个巨大的修修补补的大杂烩。事实上,NGU 极度复杂,看起来像是打满各种补丁的临时组合。现在在 NGU 的顶部,我们还加入了元控制器,甚至是 bandits ,最终成就了一款几乎无所不包的工具。


DeepMind 成立于 2010 年,2014 年被谷歌收购。DeepMind 开发的 AlphaGo 在 2016 年击败了最优秀的人类围棋选手之一。


原文链接:


DeepMind’s Agent57 Outperforms Humans on All Atari 2600 Games


译者简介:


冬雨,小小技术宅一枚,关注编程、软件工程、敏捷、DevOps、云计算等领域,非常乐意将国外新鲜的 IT 资讯和深度技术文章翻译分享给大家。


2020-05-19 14:381647

评论

发布
暂无评论
发现更多内容

2023年中国国民家庭阅读白皮书

易观分析

家庭 阅读

全屋智能,始终在等一双“究极手”

脑极体

智能家居

C语言编程—常量

芯动大师

云原生可观测性的几大误区

Yestodorrow

云原生 APM 监控 可观测性

ChatGPT到来个人如何应对

程序员半支烟

人工智能 职业成长

操作系统国产化步入深水区,小程序技术助力生态搭建

FinClip

Cloud Studio 有“新”分享

CODING DevOps

IDO&IEO盘点,包括PoseiSwap等即将面向市场的潜力打新活动

BlockChain先知

HashMap 底层是如何实现的?

javacn.site

java面试

Golden Gate (GGX) 启动公测,下一代创新DeFi和跨链 dApps 征程开始

股市老人

如何一行代码实现 OpenAI 可观测,大幅提升使用体验

观测云

云计算 可观测 观测云 ChatGPT 可观测性用观测云

开通 ChatGPT Plus 的一些经验分享(66/100)

hackstoic

ChatGPT

展会回顾 | 2023元宇宙生态博览会圆满落幕,3DCAT荣获“元宇宙交互技术奖”

3DCAT实时渲染

元宇宙 实时云渲染 实时渲染云

inBuilder低代码平台开发者分享课丨提交PR的正确姿势

inBuilder低代码平台

保密+完整+可用+安全,规避代码安全「马奇诺防线」,构建软件供应链整体安全

极狐GitLab

高可用 DevSecOps geo 代码安全 软件供应链安全

基于HTML5智慧产业园三维可视化运维平台

2D3D前端可视化开发

物联网 数字孪生 三维可视化 工业组态 智慧产业园区

OpenCloudOS 如何基于 eBPF 实现容器级别的TCP 连接监控?

OpenCloudOS

Linux

国产游戏引擎,竟然用来搞民航

Openlab_cosmoplat

人工智能 开源

做实大模型的产业价值,度小满深耕“NLP+金融”

脑极体

金融 nlp 度小满

全球首款通过HDR Vivid认证的平板发布,华为视频全场景观影体验再升级

最新动态

IDO&IEO盘点,包括PoseiSwap等即将面向市场的潜力打新活动

股市老人

Django笔记三十一之全局异常处理

Hunter熊

Python django 异常处理 全局异常

发现你的职业价值观:打造成功职业生涯的关键

Jack

Vue3迎来升级,全面助力企业数字化转型

引迈信息

让算力不再成为瓶颈,小红书机器学习异构硬件推理优化之道

小红书技术REDtech

机器学习 架构 异构计算

Maven PKIX path building failed 错误提示

HoneyMoose

LlamaIndex 联合创始人下场揭秘:如何使用私有数据提升 LLM 的能力?

Zilliz

Milvus Zilliz LLM zillizcloud llamaindex

2023-05-18:有 n 名工人。 给定两个数组 quality 和 wage , 其中,quality[i] 表示第 i 名工人的工作质量,其最低期望工资为 wage[i] 。 现在我们想雇佣

福大大架构师每日一题

Go 算法 rust

DeepMind推出Agent57,在所有雅达利游戏上超越人类_AI&大模型_Anthony Alford_InfoQ精选文章