2天时间,聊今年最热的 Agent、上下文工程、AI 产品创新等话题。2025 年最后一场~ 了解详情
写点什么

数据湖和 SQL 并不矛盾

  • 2020-01-08
  • 本文字数:1766 字

    阅读完需:约 6 分钟

数据湖和SQL并不矛盾

数据量的增加推动了技术的更新和范式的变化。与此同时,SQL 仍然是主流。随着数据的增长和复杂性的增加,SQL 比以往任何时候都更适合分析和转换数据湖中的数据。本文探讨了如何将 SQL 用于数据湖和新的数据生态系统。本文要点:随着数据的增长和复杂性的增加,SQL 比以往任何时候都更适合分析和转换数据湖中的数据。


本文最初发布于 TowardsDataScience,经原作者授权由 InfoQ 中文站翻译并分享。

记得 NoSQL 吗?

NoSQL 数据库的出现带来了巨大的可伸缩性和简单性。


如果我们必须高速处理大量的数据,我们会被告知 NoSQL 是唯一的出路。供应商一直在喋喋不休地讨论 SQL 和中间件代码之间的阻抗失配问题。


现在我们发现,大多数 NoSQL 供应商在花了几年时间来贬低连接之后,都引入了 SQL 层。一些供应商还引入了 SQL 方言,使情况变得更糟。


在 NoSQL 上引入这个 SQL 层似乎是出于对新一代数据库的恐惧,比如谷歌 Spanner,以及提供 JSON、XML 作为一等数据类型的数据库供应商。

Hadoop 呢?

Hadoop 为开发人员提供了 map-reduce 接口,这带来了一些巨大的进步,但同时也带来了很多问题(见 DeWitt 和 Stonebraker 的文章MapReduce:一次大倒退)。


在 Hadoop 上使用 map-reduce 处理数据还有很多需要改进的地方。性能调优、数据倾斜处理、获得最佳吞吐量,所有这些都需要太多的裸机代码更改。


人们尝试了多种受 SQL 启发的方法:


  • Apache Pig:类 SQL 语法、FOREACH 代替 FROM、GENERATE 代替 SELECT;

  • Hive: 用于 SQL-in-Hadoop 的类 MySQL 语法、将 SQL 转换为 map-reduce;

  • Drill、Impala、Presto 和 Pivotal 的 HAWQ:SQL-on-Hadoop,绕过 map-reduce;

  • Spark SQL:SQL on Spark;

  • Apache Phoenix:SQL on HBase;

  • Hadoop 作为已有 DB 的外部表:Oracle Big Data SQL、Teradata SQL-H。


经过多年的“大数据时代”,以及一些 Hadoop 的兼并和破产,我们现在看到了这些技术的幸存者。Hadoop 技术现在更多地存在云中,而不是在本地环境中。现在,在组织中已经不经常看到完整的 Cloudera 或 HortonWorks 栈了。相反,少数几种技术蓬勃发展,现在已广泛用于云数据栈。

数据湖上的 SQL

Stonebraker 很久以前就指出,数据库的性能问题和可伸缩性与 SQL 关系不大,而更多地与数据库本身的设计有关(NoSQL的讨论与SQL无关)。


SQL 的最大优点是它提供了熟悉性和分析数据的表达能力。SQL 的健壮性以关系代数和集合理论为基础。


对于数据湖,我们可以看到以下这些技术。


  • Hive 元数据存储是人们喜爱的数据目录。

  • 在 SQL 层,Presto 作为一个查询层脱颖而出,并在 Amazon Athena、Google Cloud DataProc、Qubole 中得到了广泛应用。

  • Spark 和 Spark SQL 的应用也很广泛。

  • Hadoop 文件系统(HDFS)用的不那么多了,云存储(Azure Blob、谷歌云存储、AWS S3)更受欢迎,CSV、Avro 和 Parquet 文件格式也更受欢迎了。

云数据仓库和数据湖

在原始文件系统上存储的经济性推动了数据湖的创建。SQL 被用于分析数据。


Amazon RedShift Spectrum 可以查询 S3 数据。


Snowflake DB 可以使用 VARIANT 列在数据库中存储 XML、JSON 或 ORC 数据,还可以使用外部表指向 S3 中的数据。


外部表还支持谷歌 BigQuery 和 Azure SQL 数据仓库。

SQL 和 ELT (提取 加载 转换)

数据处理的 ELT(提取 加载 转换)范式将数据转换步骤放在最后。首先从源系统提取数据并将其加载到数据库中。


旧的 ETL 方法 RBAR(逐行处理)与关系数据库执行的基于集合的处理形成了直接的对比,而基于集合的处理构成了 SQL 的基础。


ELT 中,我们现在从源数据库中提取数据并将其放入数据湖中。


SQL 转换在云数据仓库或使用 Presto 完成,并将转换后的数据加载到目标表。


通过 GoldenGate、AWS DMS,或者使用 Workato/Jitterbit/StitchData 等工具或 Kafka 等健壮的事件管道,一点点地向数据湖或数据仓库输送数据。将源系统和加载区域之间的转换最小化。然后使用 SQL 将这些数据转换并加载到仓库和分析层。


ELT 工具链使用 DAG(有向无环图)工具,如 Apache AirFlow 和无服务器函数,而不是旧的 ETL 工具链中类似 AutoSys 这样的调度器。


DBT 是在转换领域流行的另一个工具。像 FiveTran 和 Matillion 这样的云数据处理工具也使用 SQL 和 ELT。Domo 序列化 SQL 来创建转换管道。Looker 基于 LookML 生成 SQL。


原文链接


https://towardsdatascience.com/data-lakes-and-sql-49084512dd70


2020-01-08 08:002562
用户头像
刘燕 InfoQ高级技术编辑

发布了 1123 篇内容, 共 602.0 次阅读, 收获喜欢 1982 次。

关注

评论

发布
暂无评论
发现更多内容

CnosDB容灾方案概述

CnosDB

开源 时序数据库 tsdb CnosDB

分层架构最佳实践

俞凡

架构

最大输出 18W,集成 Type-C PD 输出和各种快充输出协议

芯动大师

文心一言 VS 讯飞星火 VS chatgpt (173)-- 算法导论13.3 2题

福大大架构师每日一题

福大大架构师每日一题

工赋®新思直播预告 | 1月9日晚19:00,基于运营数字孪生的工艺质量控制与优化

工赋开发者社区

2024-01-06:用go语言,在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧 在桥上有一些石子,青蛙很讨厌踩在这些石子上 由于桥的长度和青蛙一次跳过的距离都是正整数 我们可以把独木桥

福大大架构师每日一题

福大大架构师每日一题

DevOps|产研运协作工具链上的皇冠-项目管理工具

laofo

项目管理 DevOps cicd 敏捷开发 研发效能

IDC报告:网心科技以11.8%的市场份额位居中国边缘公有云第三

网心科技

有什么安全处理方案可以有效防护恶意爬虫

德迅云安全杨德俊

爬虫 安全 CDN

【Java技术深入解析】「核心技术提升」最流行的Java模拟框架Mockito入门指南(Java单元测试)

码界西柚

Java Mock 服务 技术分析 2024年第四篇文章

分布式系统设计: 从1千到10亿用户的跨越

俞凡

架构

通过聚道云软件连接器实现钉钉与自研主数据系统的完美融合

聚道云软件连接器

案例分享

工信部:5项工业互联网平台国家标准正式发布实施

工赋开发者社区

小红书 X WSDM 2024「对话式多文档问答挑战赛」火热开赛!

小红书技术REDtech

人工智能 数据挖掘 搜索 信息检索 WSDM

数据湖和SQL并不矛盾_AI&大模型_Shirish Joshi_InfoQ精选文章