速来报名!AICon北京站鸿蒙专场~ 了解详情
写点什么

数据湖和 SQL 并不矛盾

  • 2020-01-08
  • 本文字数:1766 字

    阅读完需:约 6 分钟

数据湖和SQL并不矛盾

数据量的增加推动了技术的更新和范式的变化。与此同时,SQL 仍然是主流。随着数据的增长和复杂性的增加,SQL 比以往任何时候都更适合分析和转换数据湖中的数据。本文探讨了如何将 SQL 用于数据湖和新的数据生态系统。本文要点:随着数据的增长和复杂性的增加,SQL 比以往任何时候都更适合分析和转换数据湖中的数据。


本文最初发布于 TowardsDataScience,经原作者授权由 InfoQ 中文站翻译并分享。

记得 NoSQL 吗?

NoSQL 数据库的出现带来了巨大的可伸缩性和简单性。


如果我们必须高速处理大量的数据,我们会被告知 NoSQL 是唯一的出路。供应商一直在喋喋不休地讨论 SQL 和中间件代码之间的阻抗失配问题。


现在我们发现,大多数 NoSQL 供应商在花了几年时间来贬低连接之后,都引入了 SQL 层。一些供应商还引入了 SQL 方言,使情况变得更糟。


在 NoSQL 上引入这个 SQL 层似乎是出于对新一代数据库的恐惧,比如谷歌 Spanner,以及提供 JSON、XML 作为一等数据类型的数据库供应商。

Hadoop 呢?

Hadoop 为开发人员提供了 map-reduce 接口,这带来了一些巨大的进步,但同时也带来了很多问题(见 DeWitt 和 Stonebraker 的文章MapReduce:一次大倒退)。


在 Hadoop 上使用 map-reduce 处理数据还有很多需要改进的地方。性能调优、数据倾斜处理、获得最佳吞吐量,所有这些都需要太多的裸机代码更改。


人们尝试了多种受 SQL 启发的方法:


  • Apache Pig:类 SQL 语法、FOREACH 代替 FROM、GENERATE 代替 SELECT;

  • Hive: 用于 SQL-in-Hadoop 的类 MySQL 语法、将 SQL 转换为 map-reduce;

  • Drill、Impala、Presto 和 Pivotal 的 HAWQ:SQL-on-Hadoop,绕过 map-reduce;

  • Spark SQL:SQL on Spark;

  • Apache Phoenix:SQL on HBase;

  • Hadoop 作为已有 DB 的外部表:Oracle Big Data SQL、Teradata SQL-H。


经过多年的“大数据时代”,以及一些 Hadoop 的兼并和破产,我们现在看到了这些技术的幸存者。Hadoop 技术现在更多地存在云中,而不是在本地环境中。现在,在组织中已经不经常看到完整的 Cloudera 或 HortonWorks 栈了。相反,少数几种技术蓬勃发展,现在已广泛用于云数据栈。

数据湖上的 SQL

Stonebraker 很久以前就指出,数据库的性能问题和可伸缩性与 SQL 关系不大,而更多地与数据库本身的设计有关(NoSQL的讨论与SQL无关)。


SQL 的最大优点是它提供了熟悉性和分析数据的表达能力。SQL 的健壮性以关系代数和集合理论为基础。


对于数据湖,我们可以看到以下这些技术。


  • Hive 元数据存储是人们喜爱的数据目录。

  • 在 SQL 层,Presto 作为一个查询层脱颖而出,并在 Amazon Athena、Google Cloud DataProc、Qubole 中得到了广泛应用。

  • Spark 和 Spark SQL 的应用也很广泛。

  • Hadoop 文件系统(HDFS)用的不那么多了,云存储(Azure Blob、谷歌云存储、AWS S3)更受欢迎,CSV、Avro 和 Parquet 文件格式也更受欢迎了。

云数据仓库和数据湖

在原始文件系统上存储的经济性推动了数据湖的创建。SQL 被用于分析数据。


Amazon RedShift Spectrum 可以查询 S3 数据。


Snowflake DB 可以使用 VARIANT 列在数据库中存储 XML、JSON 或 ORC 数据,还可以使用外部表指向 S3 中的数据。


外部表还支持谷歌 BigQuery 和 Azure SQL 数据仓库。

SQL 和 ELT (提取 加载 转换)

数据处理的 ELT(提取 加载 转换)范式将数据转换步骤放在最后。首先从源系统提取数据并将其加载到数据库中。


旧的 ETL 方法 RBAR(逐行处理)与关系数据库执行的基于集合的处理形成了直接的对比,而基于集合的处理构成了 SQL 的基础。


ELT 中,我们现在从源数据库中提取数据并将其放入数据湖中。


SQL 转换在云数据仓库或使用 Presto 完成,并将转换后的数据加载到目标表。


通过 GoldenGate、AWS DMS,或者使用 Workato/Jitterbit/StitchData 等工具或 Kafka 等健壮的事件管道,一点点地向数据湖或数据仓库输送数据。将源系统和加载区域之间的转换最小化。然后使用 SQL 将这些数据转换并加载到仓库和分析层。


ELT 工具链使用 DAG(有向无环图)工具,如 Apache AirFlow 和无服务器函数,而不是旧的 ETL 工具链中类似 AutoSys 这样的调度器。


DBT 是在转换领域流行的另一个工具。像 FiveTran 和 Matillion 这样的云数据处理工具也使用 SQL 和 ELT。Domo 序列化 SQL 来创建转换管道。Looker 基于 LookML 生成 SQL。


原文链接


https://towardsdatascience.com/data-lakes-and-sql-49084512dd70


2020-01-08 08:002313
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 539.0 次阅读, 收获喜欢 1977 次。

关注

评论

发布
暂无评论
发现更多内容

TiDB x KubeBlocks 集成案例

TiDB 社区干货传送门

管理与运维

【TiDB 社区升级互助材料】TiDB 版本升级最全材料包

TiDB 社区干货传送门

版本升级

故障排查难?xpu_timer 让大模型训练无死角!

可信AI进展

GPT-4o 后 LLM 时代 RTC 需求讨论会丨社区伙伴活动分享

声网

通过考证深入了解TiDB

TiDB 社区干货传送门

社区活动 数据库架构选型 学习&认证&课程

analyze 采样率是怎么算出来的(v6.5.3)

TiDB 社区干货传送门

TiDB 源码解读 6.x 实践

【论文速读】|大语言模型是少样本测试员:探索基于LLM的通用漏洞复现

云起无垠

聊聊Python多进程

我再BUG界嘎嘎乱杀

Python 编程 后端 多进程 开发语言

基于大语言模型的应用

悦数图数据库

大语言模型

Introducing Wallys DR5018M: Achieving Up to 1.5Gbps in Industrial WiFi6 Applications

wallyslilly

ipq5018

数据库与人工智能的关系

悦数图数据库

图数据库

如何通过算法触达,高效唤醒沉睡会员?奇点云“向价值进发”直播回顾

先锋IT

IPQ5322 and IPQ9531-Technical comparison and application analysis

wifi6-yiyi

ipq5322

深入理解Python中的深拷贝与浅拷贝

我再BUG界嘎嘎乱杀

Python 编程语言 后端 开发语言 深拷贝与浅拷贝

多点数千套集群实践:从“MySQL 又不是不能用,为什么选择 TiDB?”到“能用 TiDB 就不用 MySQL”

TiDB 社区干货传送门

实践案例 社区活动 管理与运维 TUG 话题探讨 数据库前沿趋势

全球最大图片社交网站Pinterest为什么会放弃HBase而改用TiDB

TiDB 社区干货传送门

社区活动

如何通过店铺集群实现高效库存规划

第七在线

使用 TiDB Vector 搭建 RAG 应用 - TiDB 文档问答小助手

TiDB 社区干货传送门

版本测评 新版本/特性解读 数据库前沿趋势

云计算技术架构揭秘与发展

Finovy Cloud

云计算 云计算架构

开启未来出行新纪元:44.8英寸超视界9K疾速屏智能座舱,高端车载显示技术引领用户体验新变革!

爱极客侠

NumPy 分割与搜索数组详解

EquatorCoco

数组 Numpy

TiDB Cloud x Datadog 集成案例

TiDB 社区干货传送门

应用适配

多点 x TiDB:在出海多云多活架构中,多点运维 TiDB 的实战分享

TiDB 社区干货传送门

实践案例 社区活动

启航TiDB:调试环境搭建(vscode+wsl+pd)

TiDB 社区干货传送门

开发语言 TiDB 源码解读 应用适配

聊聊缺陷逃逸率

老张

质量保障 缺陷管理 缺陷预防

FT-FMEA融合混沌演练,零售运营系统韧性架构在线验证实践

华为云开发者联盟

开发 华为云 华为云开发者联盟 确定性运维 企业号2024年5月PK榜

2024年API趋势,哪些API将增加市场份额?

幂简集成

API

天翼AI云电脑重塑未来工作方式的利器,邀您5月25日相聚福州!

编程猫

数据湖和SQL并不矛盾_AI&大模型_Shirish Joshi_InfoQ精选文章