写点什么

Amazon SageMaker 增加批量转换功能和适用于 TensorFlow 容器的管道输入模式

  • 2019-10-22
  • 本文字数:2053 字

    阅读完需:约 7 分钟

Amazon SageMaker 增加批量转换功能和适用于 TensorFlow 容器的管道输入模式

在几天前的纽约峰会期间,我们推出了两个新的 Amazon SageMaker 功能:一是批量转换功能,这是一种新的批量推断功能,客户可以通过它对 PB 级的数据进行非实时场景预测;二是适用于 TensorFlow 容器的管道输入模式。SageMaker 依然是我们最受欢迎的服务之一,此博客机器学习博客都对它进行了非常广泛的介绍。事实上,要赶上 SageMaker 团队快速的创新步伐是一件较为困难的事情。自上一篇有关 SageMaker 自动模型调整和超参数优化功能的博客发布以来,该团队已经推出了 4 种新的内置算法和许多的新功能。下面我们来看新推出的批量转换功能。

批量转换

批量转换功能是一种高性能、高吞吐量的数据转换和推断生成方法。它非常适合处理大批量数据、不需要亚秒级延迟或需要同时预处理和转换训练数据的场景。最大的好处?您无需编写任何额外的代码即可使用此功能。您可以使用所有现有的模型,并根据这些模型开始批量转换作业。此功能不加收任何费用,您只需为底层资源付费。


下面我们来看如何将此功能用于内置的对象检测算法。我将利用示例笔记本来训练对象检测模型。现在我将打开 SageMaker 控制台,然后打开 Batch Transform(批量转换)子控制台。



我可以在这里启动新的批量转换作业。



我可以在此为我的转换作业命名,选择我希望使用的模型,以及要使用的实例数量和类型。此外,我可以配置同时向我的推断发送的记录数量以及负载的大小。如果我未手动指定这些参数,则 SageMaker 将选择一些合理的默认值。



然后我需要指定输入位置。我可以使用清单文件或直接将所有文件加载到某个 S3 位置。由于我使用的是映像,我已经手动指定了我的输入内容类型。



最后,我将配置输出位置并启动作业!



一旦作业开始运行,我可以打开作业详细信息页面,点击链接查看 Amazon CloudWatch 中的指标和日志。



我可以看到作业正在运行,如果要看 S3 中的结果,我可以看到每个映像的预测标签。



转换结果将按每个输入文件生成一个输出 JSON 文件,其中包含检测到的对象。


这时可以非常轻松地为 AWS Glue 中的存储桶创建表,以及使用 Amazon Athena 查询结果或使用 Amazon QuickSight 将结果可视化


当然还可以通过 SageMaker API 以编程方式启动这些作业。


有关如何在您自己的容器中使用批量转换功能的更多详细信息,请参阅文档

适用于 Tensorflow 的管道输入模式

借助管道输入模式,客户可以使用高度优化的多线程后台进程,直接以流的方式将训练数据集从 Amazon Simple Storage Service (S3) 传入 Amazon SageMaker。与文件输入模式相比,这种模式极大地提高了读取吞吐量,因为后者必须首先将数据下载到本地 Amazon Elastic Block Store (EBS) 卷。这意味着您的训练作业可以更快启动,更快完成,使用的磁盘空间更少,与模型训练有关的费用也更低。此外,它还可让您训练超过 16 TB EBS 卷容量限制的数据集。



今天初,我们对管道输入模式进行了一些试验,发现 78 GB 数据集的启动时间最高减少了 87%,吞吐量是一些对比场景的两倍,最终总训练时间减少了 35%。


通过增加对适用于 TensorFlow 的管道输入模式的支持,进一步方便客户利用内置算法更快的速度优势。下面我们来看实际操作。


首先,我需要确保我的训练作业使用 sagemaker-tensorflow-扩展名。这将为我们提供新的 PipeModeDataset 类,它以通道和记录格式为输入,并返回一个 TensorFlow 数据集。我们可以将它用于 TensorFlow 估算器的 input_fn ,并从通道读取。下面的示例代码是一个简单的示例。


Python


from sagemaker_tensorflow import PipeModeDataset
def input_fn(channel): # Simple example data - a labeled vector. features = { 'data': tf.FixedLenFeature([], tf.string), 'labels': tf.FixedLenFeature([], tf.int64), }
# A function to parse record bytes to a labeled vector record def parse(record): parsed = tf.parse_single_example(record, features) return ({ 'data': tf.decode_raw(parsed['data'], tf.float64) }, parsed['labels'])
# Construct a PipeModeDataset reading from a 'training' channel, using # the TF Record encoding. ds = PipeModeDataset(channel=channel, record_format='TFRecord')
# The PipeModeDataset is a TensorFlow Dataset and provides standard Dataset methods ds = ds.repeat(20) ds = ds.prefetch(10) ds = ds.map(parse, num_parallel_calls=10) ds = ds.batch(64)
return ds
复制代码


然后,您可以按照与正常 TensorFlow 估算器相同的方式定义模型。对于估算器的创建时间,您只需确保 input_mode='Pipe' 在参数中即可。



现已推出


这两项新功能都已免费推出,我期待看到客户利用新的批量转换功能创造的好东西。我现在就可以告诉您的是,它可帮助我们处理 AWS 营销部的一些内部 ML 工作负载


同样,请在评论区或 Twitter 上发表您对这项功能的看法!


本文转载自 AWS 技术博客。


原文链接:


https://amazonaws-china.com/cn/blogs/china/sagemaker-nysummit2018/


2019-10-22 08:00860

评论

发布
暂无评论
发现更多内容

二哥的小破站终于上线了,颜值贼高!

沉默王二

Java 分布式

AI开发平台系列2:集成式机器学习平台对比分析

Baihai IDP

AI

云单元架构,如何赋能数字化转型呢?

博文视点Broadview

Linux之chown命令

入门小站

Linux

Apache Flink 不止于计算,数仓架构或兴起新一轮变革

Apache Flink

大数据 flink 编程 实时计算 流式数仓

java开发框架Redis之sentinel和集群

@零度

redis JAVA开发

EventBridge 最佳实践场景:流计算 Oceanus 告警消息实时推送

腾讯云大数据

flink 流计算 Oceanus

图形测试分析毫无头绪?HarmonyOS图形栈测试技术帮你解决|HDC2021技术分论坛

HarmonyOS开发者

HarmonyOS

有道围棋 AI:智能匹配儿童棋力的良师益友

有道技术团队

网易有道 围棋

Tableau Day2: 可视化入门图形制作

贾献华

1月月更

前端质量提升利器-马可代码覆盖率平台

vivo互联网技术

前端 代码 平台架构

在线CSS代码压缩美化工具

入门小站

工具

SAP HANA Delivery Unit概念简述

汪子熙

数据库 内存数据库 1月月更

TDengine助力京东云IoT数据统计改造

TDengine

数据库 tdengine OpenTSDB

阿里副总裁浅雪对话VMware全球副总裁原欣:阿里云携手VMware,助力企业数字化转型

大咖说

云计算 阿里云 数字化转型 阿里巴巴‘

网络安全好学吗?手把手教你学利用漏洞渗透 网络安全工程师学习资料汇总

学神来啦

十三部门修订发布《网络安全审查办法》,企业数据安全合规应尽早

行云管家

云计算 互联网 网络安全 数据安全

kafka的优缺点都有那些

编程江湖

kafka

前端开发之CSS样式——自定义滚动条

@零度

CSS 前端开发

开源堡垒机可以一直免费使用吗?为什么?

行云管家

开源 网络安全 堡垒机

利用Graviton2和CloudFront为S3对象存储动态生成缩略图

亚马逊云科技 (Amazon Web Services)

存储

有了这个新特性,一扫实例存储数据丢失风险!

亚马逊云科技 (Amazon Web Services)

存储

教程直播第6期 | OceanBase 如何进行 Benchmark 测试及调优

OceanBase 数据库

oceanbase OceanBase 开源 OceanBase 社区版

魔电熊户外电源体验|让户外露营实现用电自由!

科技热闻

专家带你吃透 Flink 架构:一个新版 Connector 的实现

腾讯云大数据

flink 流计算 Oceanus

手把手教你使用 Timestream 实现物联网时序数据存储和分析!

亚马逊云科技 (Amazon Web Services)

存储

大数据开发之Hive表数据同步至HBase

@零度

大数据 hive HBase

【工具推荐】Github国内访问速度太慢?一招教你轻松搞定

恒生LIGHT云社区

GitHub

Vue的动态组件 & 异步组件

编程江湖

Vue

谁说count(*) 性能最差,我需要跟你聊聊

华为云开发者联盟

函数 count 字符 数据表

快来一起玩转LiteOS组件:RHas

华为云开发者联盟

C语言 LiteOS 组件 RHas 哈希函数库

Amazon SageMaker 增加批量转换功能和适用于 TensorFlow 容器的管道输入模式_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章