写点什么

Amazon SageMaker 增加批量转换功能和适用于 TensorFlow 容器的管道输入模式

  • 2019-10-22
  • 本文字数:2053 字

    阅读完需:约 7 分钟

Amazon SageMaker 增加批量转换功能和适用于 TensorFlow 容器的管道输入模式

在几天前的纽约峰会期间,我们推出了两个新的 Amazon SageMaker 功能:一是批量转换功能,这是一种新的批量推断功能,客户可以通过它对 PB 级的数据进行非实时场景预测;二是适用于 TensorFlow 容器的管道输入模式。SageMaker 依然是我们最受欢迎的服务之一,此博客机器学习博客都对它进行了非常广泛的介绍。事实上,要赶上 SageMaker 团队快速的创新步伐是一件较为困难的事情。自上一篇有关 SageMaker 自动模型调整和超参数优化功能的博客发布以来,该团队已经推出了 4 种新的内置算法和许多的新功能。下面我们来看新推出的批量转换功能。

批量转换

批量转换功能是一种高性能、高吞吐量的数据转换和推断生成方法。它非常适合处理大批量数据、不需要亚秒级延迟或需要同时预处理和转换训练数据的场景。最大的好处?您无需编写任何额外的代码即可使用此功能。您可以使用所有现有的模型,并根据这些模型开始批量转换作业。此功能不加收任何费用,您只需为底层资源付费。


下面我们来看如何将此功能用于内置的对象检测算法。我将利用示例笔记本来训练对象检测模型。现在我将打开 SageMaker 控制台,然后打开 Batch Transform(批量转换)子控制台。



我可以在这里启动新的批量转换作业。



我可以在此为我的转换作业命名,选择我希望使用的模型,以及要使用的实例数量和类型。此外,我可以配置同时向我的推断发送的记录数量以及负载的大小。如果我未手动指定这些参数,则 SageMaker 将选择一些合理的默认值。



然后我需要指定输入位置。我可以使用清单文件或直接将所有文件加载到某个 S3 位置。由于我使用的是映像,我已经手动指定了我的输入内容类型。



最后,我将配置输出位置并启动作业!



一旦作业开始运行,我可以打开作业详细信息页面,点击链接查看 Amazon CloudWatch 中的指标和日志。



我可以看到作业正在运行,如果要看 S3 中的结果,我可以看到每个映像的预测标签。



转换结果将按每个输入文件生成一个输出 JSON 文件,其中包含检测到的对象。


这时可以非常轻松地为 AWS Glue 中的存储桶创建表,以及使用 Amazon Athena 查询结果或使用 Amazon QuickSight 将结果可视化


当然还可以通过 SageMaker API 以编程方式启动这些作业。


有关如何在您自己的容器中使用批量转换功能的更多详细信息,请参阅文档

适用于 Tensorflow 的管道输入模式

借助管道输入模式,客户可以使用高度优化的多线程后台进程,直接以流的方式将训练数据集从 Amazon Simple Storage Service (S3) 传入 Amazon SageMaker。与文件输入模式相比,这种模式极大地提高了读取吞吐量,因为后者必须首先将数据下载到本地 Amazon Elastic Block Store (EBS) 卷。这意味着您的训练作业可以更快启动,更快完成,使用的磁盘空间更少,与模型训练有关的费用也更低。此外,它还可让您训练超过 16 TB EBS 卷容量限制的数据集。



今天初,我们对管道输入模式进行了一些试验,发现 78 GB 数据集的启动时间最高减少了 87%,吞吐量是一些对比场景的两倍,最终总训练时间减少了 35%。


通过增加对适用于 TensorFlow 的管道输入模式的支持,进一步方便客户利用内置算法更快的速度优势。下面我们来看实际操作。


首先,我需要确保我的训练作业使用 sagemaker-tensorflow-扩展名。这将为我们提供新的 PipeModeDataset 类,它以通道和记录格式为输入,并返回一个 TensorFlow 数据集。我们可以将它用于 TensorFlow 估算器的 input_fn ,并从通道读取。下面的示例代码是一个简单的示例。


Python


from sagemaker_tensorflow import PipeModeDataset
def input_fn(channel): # Simple example data - a labeled vector. features = { 'data': tf.FixedLenFeature([], tf.string), 'labels': tf.FixedLenFeature([], tf.int64), }
# A function to parse record bytes to a labeled vector record def parse(record): parsed = tf.parse_single_example(record, features) return ({ 'data': tf.decode_raw(parsed['data'], tf.float64) }, parsed['labels'])
# Construct a PipeModeDataset reading from a 'training' channel, using # the TF Record encoding. ds = PipeModeDataset(channel=channel, record_format='TFRecord')
# The PipeModeDataset is a TensorFlow Dataset and provides standard Dataset methods ds = ds.repeat(20) ds = ds.prefetch(10) ds = ds.map(parse, num_parallel_calls=10) ds = ds.batch(64)
return ds
复制代码


然后,您可以按照与正常 TensorFlow 估算器相同的方式定义模型。对于估算器的创建时间,您只需确保 input_mode='Pipe' 在参数中即可。



现已推出


这两项新功能都已免费推出,我期待看到客户利用新的批量转换功能创造的好东西。我现在就可以告诉您的是,它可帮助我们处理 AWS 营销部的一些内部 ML 工作负载


同样,请在评论区或 Twitter 上发表您对这项功能的看法!


本文转载自 AWS 技术博客。


原文链接:


https://amazonaws-china.com/cn/blogs/china/sagemaker-nysummit2018/


2019-10-22 08:00660

评论

发布
暂无评论
发现更多内容

EMR重磅发布智能运维诊断系统(EMR Doctor)——开源大数据平台运维利器

阿里云大数据AI技术

大数据 运维 企业号九月金秋榜 EMR

软件测试 | 测试开发 | 测试人生 | 毕业2年未满,0经验拿下知名互联网企业30W 年薪,他是怎么做到的?

测吧(北京)科技有限公司

软件测试 | 测试开发 | 测试人生 | 转行测试开发,4年4“跳”年薪涨3倍,我的目标是星辰大海(附大厂面经)!

测吧(北京)科技有限公司

测试

2022vivo“千镜杯”正式开赛,为守护用户安全而战!

Geek_2d6073

金蝶云星空&契约锁专场直播:帮企业从小处降本,从细节增效!

IT资讯搬运工

金融

Nginx 模块开发

C++后台开发

nginx 后台开发 中间件 后端开发 Nginx模块开发

不懂 Kubernetes 实现云原生是什么体验?

北京好雨科技有限公司

云原生 #Kubernetes#

羊了个羊暴力通关玩法

大熊G

解析Stream foreach源码

华为云开发者联盟

Java 开发 企业号九月金秋榜

怎么合理使用索引

急需上岸的小谢

9月月更

软件测试 | 测试开发 | 测试人生 | 二线城市涨薪近10万 ,还能955,这样的机会你想不想要?

测吧(北京)科技有限公司

测试

从低代码的前世今生,看软件开发趋势

SoFlu软件机器人

MyBatis-Plus(一、快速入门)

MySQL Mybatis-Plus 9月月更

多版本并发控制 MVCC

月明风清

软件测试 | 测试开发 | 测试人生 | 年薪超过40W,一位测试媛宝妈的 BAT 大厂逆袭之旅

测吧(北京)科技有限公司

测试

聚焦指标及管理,Kyligence 发布指标中台 SaaS 产品 Zen

Kyligence

数据分析 OLAP Kyligence 指标中台

容器化|自建 MySQL 集群迁移到 Kubernetes

RadonDB

MySQL 数据库 RadonDB Kubernetes 集群

恭喜 SelectDB 三位开发者成为 Apache Doris 新晋 Committer!

SelectDB

大数据 开源项目 Committer SelectDB 企业号九月金秋榜

开源指南|如何从零开始参与 Apache 顶级开源项目?(二)

SelectDB

数据库 大数据 Doris 开源治理 企业号九月金秋榜

软件测试 | 测试开发 | 接口测试框架实战(二)| 接口请求断言

测吧(北京)科技有限公司

测试

软件测试 | 测试开发 | 接口测试框架实战(一) | Requests 与接口请求构造

测吧(北京)科技有限公司

测试

软件测试 | 测试开发 | 接口测试框架实战 | 流程封装与基于加密接口的测试用例设计

测吧(北京)科技有限公司

测试

软件测试 | 测试开发 | Jenkins 如何参数化job ?

测吧(北京)科技有限公司

测试

软件测试 | 测试开发 | 测试人生 | 从功能到外企测开,工作1年半拿下年薪30万的测开 offer,这个95后小姐姐未来可期~

测吧(北京)科技有限公司

测试

软件测试 | 测试开发 | 测试人生 | 折腾 6 年踩坑无数的”笨小孩“:方向对了,路就不会遥远!

测吧(北京)科技有限公司

测试

Istio Ambient Mesh 介绍

Se7en

字节跳动基于ClickHouse优化实践之“高可用”

字节跳动数据平台

数据库 大数据 Clickhouse 数据开发 数据计算

Redis 的PSYNC命令

急需上岸的小谢

9月月更

PSYNC 部分重同步的原理

急需上岸的小谢

9月月更

科技公司内部 SaaS 工具大公开|活动回顾(含视频 & PPT)

Bytebase

创业 工具 开发者工具 SaaS

MobLink iOS端快速集成文档

MobTech袤博科技

ios xcode

Amazon SageMaker 增加批量转换功能和适用于 TensorFlow 容器的管道输入模式_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章