开工福利|免费学 2200+ 精品线上课,企业成员人人可得! 了解详情
写点什么

Hugging Face 大语言模型优化技术

  • 2023-10-07
    北京
  • 本文字数:1303 字

    阅读完需:约 4 分钟

大小:684.82K时长:03:53
Hugging Face 大语言模型优化技术

大语言模型的生产部署存在两个主要的挑战,一个是需要大量的参数,一个是需要处理非常长的用于表示上下文信息的输入序列。Hugging Face 基于他们提供大模型服务的经验分享了一些克服这些障碍的技术


Patrick von Platen 在文中介绍的 Hugging Face 研究的三种技术是降低数值精度、使用一种叫作 Flash Attention 的注意力算法,以及使用专门的推理架构


大语言模型需要大量的 VRAM 来加载,从几十(bigcode/starcoder)到数百 GB (Llama、Bloom、GPT3)。第一个优化手段是从float32切换到bfloat16精度:


现在几乎所有的模型都是基于 bfloat16 训练的,如果你的 GPU 支持 bfloat16,就没有理由基于全 float32 精度运行模型。float32 不会给出比训练模型所使用的精度更好的推理结果。


这可以使总体内存消耗减少一半,但可惜的是,在许多情况下仍然需要很大的内存。一种更激进的方法是将模型权重量化为 8 位或 4 位,这已经被证明不会导致显著的性能下降


量化对于文本生成来说特别有效,因为我们所关心的是选择最有可能的下一个标记集合,而不是下一个标记 Logit 分布的确切值。


这将进一步减少所需的内存,使得在只有 16GB VRAM 的 GPU 上运行较小的模型成为可能,尽管代价是推理时间稍长。


von Platen 写道,使用Flash Attention是另一相关键的优化,它是大语言模型用来理解输入标记上下文关系的自注意力层的一种算法,有可能打破输入标记数量的二次增长。


因为该算法太过复杂,无法在这里描述,但可以这么说,它利用了 softmax 规范化统计数据和一些数学手段,在只需要随输入标记线性增长的内存的情况下提供相同的输出。推理性能也得益于算法使用了更快的 SRAM 而不是更慢的 GPU VRAM。


在实践中,目前绝对没有理由不使用 Flash Attention。该算法在数学层面给出了相同的输出,并且速度更快,内存效率更高。


Here recent research can help to make the right choice with two components that quickly become bottlenecks, says von Platen, _positional embeddings_ and the _key-value cache_.


在生产环境中部署大语言模型的第三项优化措施是选择正确的架构,让它们能够有效地处理长文本输入。von Platen 写道,最近的研究有助于我们如何对两个很快成为瓶颈的组件做出选择——一个是_位置嵌入(positional embeddings)_,一个是_键值缓存_。


位置嵌入通过将每个标记的位置编码为数字表示来帮助语言大模型理解序列顺序。对于需要处理大型文本输入任务的大语言模型,应该使用RoPEALiBi等相对位置嵌入技术进行训练。


RoPE 和 ALiBi 位置编码都可以外推到训练期间未遇到过的输入长度,而事实证明,与 RoPE 相比,外推对于开箱即用的 ALiBi 的效果要好得多。


目前的许多大语言模型中已经在使用这两种算法。


键值缓存可以作为对对话上下文进行编码的一种方法。键值缓存在发生每个新交互时增加一个元素,这比为每个请求编码/解码上下文的方法要有效得多。von Platen 详细介绍了两类键值缓存,即Multi-Query-Attention (MQA)Grouped-Query-Attention(GQA)


von Platen 的文章所涵盖的内容不只有本文所概述的这些,他的文章中还提供了实际的例子来证明他的观点,所以请不要错过他的文章。


原文链接

https://www.infoq.com/news/2023/09/hugging-face-optimizing-llms/

2023-10-07 10:223830

评论

发布
暂无评论
发现更多内容

嘉为蓝鲸研运一体化解决方案入选“鑫智奖”

嘉为蓝鲸

智能硬件 蓝鲸 金融数据

提升效率:P4VFS让虚拟文件同步更迅速、更简单

龙智—DevSecOps解决方案

文件同步 虚拟文件同步 Virtual File Sync

模型服务文档自动生成,要素追溯关联、结构规范易读|ModelWhale 版本更新

ModelWhale

大模型 企业团队协同 数据开放和利用 学科交叉 人文社科

【零售电商系列】走进亚马逊(一)

小诚信驿站

6 月 优质更文活动

火山引擎DataLeap:从短视频APP实践来看,如何统一数据指标口径?

字节跳动数据平台

大数据 指标体系 数据研发 指标建设

中企出海成大热趋势,海外用户如何高效触达

MobTech袤博科技

Milvus Lite 已交卷!轻量版 Milvus,主打就是一个轻便、无负担

Zilliz

Milvus 向量数据库 MILVUSLITE

墨天轮国产关系型分布式数据库榜单解读

墨天轮

数据库 GaussDB TiDB oceanbase polarDB

对话 ChatGPT 理解 Rust 异步网络 io

蓬蒿

rust 编程语言 tokio 异步网路io

备战金九银十:大厂面试官必问MySQL连环炮全梳理,你扛得住嘛?

程序员小毕

Java MySQL 数据库 程序员 面试

NFT全链游戏dapp系统开发合约定制

开发v-hkkf5566

一篇关于代码质量的实用攻略!

飞算JavaAI开发助手

代码质量 软件开发、

有哪些内外网都能传输文件的工具-镭速

镭速

揭秘新一代云数仓技术架构与最佳实践

字节跳动数据平台

大数据 数据仓库 云原生 OLAP 数据仓库服务

10个刚需的Blender小技巧

Finovy Cloud

blender C4D

开发一个API Gateway

无心

API Gateway

软件测试丨Allure2报告中添加用例支持tags标签、失败重试功能

测试人

程序员 软件测试 测试开发 测试用例 Allure

怎样区分试验与仿真的关系?

思茂信息

仿真软件 仿真技术

国外云主机:为你的业务提供全球级托管!

一只扑棱蛾子

云主机

迈向新时代的英特尔代工服务:走差异化路径,坚持客户至上

最新动态

运维人员福音!自定义插件为运维提供更多可能

嘉为蓝鲸

#运维 Python运维 Linux 运维

【羊城晚报】WeOps智慧护航,传媒“领头羊”业务迈向新高度

嘉为蓝鲸

IT运维 传媒 传媒公司

几个小技巧,提高你的代码质量

飞算JavaAI开发助手

代码质量 程序员、 软件开发、

直播倒计时1天 | 一体化智能可观测平台如何保障电商节大促

博睿数据

电商 智能运维 博睿数据 直播预告

3DCAT亮相糖酒会,为元宇宙展会提供实时云渲染支持

3DCAT实时渲染

元宇宙 实时云渲染

从数据开始,构建值得信赖的生成式AI应用

澳鹏Appen

人工智能 nlp 数据标注 ChatGPT 生成式AI

Vue.js 最佳实践:提高性能和减少耦合的方法

xfgg

JavaScript Vue 前端 6 月 优质更文活动

想让ChatGPT和低代码开发实现完美结合?看这篇文章就行!

加入高科技仿生人

低代码 数字化 ChatGPT

下载量破 15000!龙蜥社区登陆阿里云 ACR 制品中心 TOP5 榜单

OpenAnolis小助手

阿里云 操作系统 容器镜像 龙蜥社区 Dragonwell

软件测试/测试开发丨Allure2报告中添加附件-图片

测试人

程序员 软件测试 测试开发 Allure

TDengine 合作伙伴 +1,这次是「DaoCloud道客」

爱倒腾的程序员

涛思数据 时序数据库 ​TDengine

Hugging Face 大语言模型优化技术_生成式 AI_Sergio De Simone_InfoQ精选文章