写点什么

Druid Segment Balance 及其代价计算函数分析

  • 2020-03-18
  • 本文字数:5890 字

    阅读完需:约 19 分钟

Druid Segment Balance 及其代价计算函数分析

一、引言

Druid 的查询需要有实时和历史部分的 Segment,历史部分的 Segment 由 Historical 节点加载,所以加载的效率直接影响了查询的 RT(不考虑缓存)。查询通常需要指定一个时间范围[StartTime, EndTime],该时间范围的内所有 Segment 需要由 Historical 加载,最差的情况是所有 Segment 不幸都储存在一个节点上,加载无疑会很慢;最好的情况是 Segment 均匀分布在所有的节点上,并行加载提高效率。所以 Segment 在 Historical 集群中分布就变得极为重要,Druid 通过 Coordinator 的 Balance 策略协调 Segment 在集群中的分布。


本文将分析 Druid 的 Balance 策略、源码及其代价计算函数,本文使用 Druid 的版本是 0.12.0。

二、Balance 方法解析

2.1 Balance 相关的配置

Druid 目前有三种 Balance 算法: cachingCost, diskNormalized, Cost, 其中 cachingCost 是基于缓存的,diskNormalized 则是基于磁盘的 Balance 策略,本文不对前两种展开篇幅分析, Druid Coordinator 中开启 cost balance 的配置如下:


druid.coordinator.startDelay=PT30Sdruid.coordinator.period=PT30S 调度的时间druid.coordinator.balancer.strategy=cost 默认
动态配置:maxSegmentsToMove = 5 ##每次Balance最多移动多少个Segment
复制代码

2.2 Cost 算法概述

Cost 是 Druid 在 0.9.1 开始引入的,在 0.9.1 之前使用的 Balance 算法会存在 Segment 不能快速均衡,分布不均匀的情况,Cost 算法的核心思想是:当在做均衡的时候,随机选择一个 Segment(假设 Segment A ), 依次计算 Segment A 和 Historical 节点上的所有 Segment 的 Cost,选取 Cost 值最小的节点,然后到该节点上重新加载 Segment。


2.3 源码和流程图分析

以下会省略一些不必要的代码


DruidCoordinatorBalancer 类


@Overridepublic DruidCoordinatorRuntimeParams run(DruidCoordinatorRuntimeParams params){  final CoordinatorStats stats = new CoordinatorStats();  // 不同tier层的分开Balance  params.getDruidCluster().getHistoricals().forEach((String tier, NavigableSet<ServerHolder> servers) -> {   balanceTier(params, tier, servers, stats);  });  return params.buildFromExisting().withCoordinatorStats(stats).build();}
复制代码


DruidCoordinatorBalancer 类的 balanceTier 方法,主要是均衡入口函数


private void balanceTier(DruidCoordinatorRuntimeParams params, String tier, SortedSet<ServerHolder> servers,CoordinatorStats stats){  final BalancerStrategy strategy = params.getBalancerStrategy();  final int maxSegmentsToMove = params.getCoordinatorDynamicConfig().getMaxSegmentsToMove();
currentlyMovingSegments.computeIfAbsent(tier, t -> new ConcurrentHashMap<>());
final List<ServerHolder> serverHolderList = Lists.newArrayList(servers);
//集群中只有一个 Historical 节点时不进行Balance if (serverHolderList.size() <= 1) { log.info("[%s]: One or fewer servers found. Cannot balance.", tier); return; }
int numSegments = 0; for (ServerHolder server : serverHolderList) { numSegments += server.getServer().getSegments().size(); }
if (numSegments == 0) { log.info("No segments found. Cannot balance."); return; } long unmoved = 0L; for (int iter = 0; iter < maxSegmentsToMove; iter++) { //通过随机算法选择一个候选Segment,该Segment会参与后面的Cost计算 final BalancerSegmentHolder segmentToMove = strategy.pickSegmentToMove(serverHolderList);
if (segmentToMove != null && params.getAvailableSegments().contains(segmentToMove.getSegment())) { //找Cost最小的节点,Cost计算入口 final ServerHolder holder = strategy.findNewSegmentHomeBalancer(segmentToMove.getSegment(), serverHolderList); //找到候选节点,发起一次Move Segment的任务 if (holder != null) { moveSegment(segmentToMove, holder.getServer(), params); } else { ++unmoved; } } } ......}
复制代码


Reservoir 随机算法,随机选择一个 Segment 进行 Balance。Segment 被选中的概率:


public class ReservoirSegmentSampler{
public BalancerSegmentHolder getRandomBalancerSegmentHolder(final List<ServerHolder> serverHolders) { final Random rand = new Random(); ServerHolder fromServerHolder = null; DataSegment proposalSegment = null; int numSoFar = 0;
//遍历所有List上的Historical节点 for (ServerHolder server : serverHolders) { //遍历一个Historical节点上所有的Segment for (DataSegment segment : server.getServer().getSegments().values()) { int randNum = rand.nextInt(numSoFar + 1); // w.p. 1 / (numSoFar+1), swap out the server and segment // 随机选出一个Segment,后面的会覆盖前面选中的,以最后一个被选中为止。 if (randNum == numSoFar) { fromServerHolder = server; proposalSegment = segment; } numSoFar++; } } if (fromServerHolder != null) { return new BalancerSegmentHolder(fromServerHolder.getServer(), proposalSegment); } else { return null; } }}
复制代码


继续调用到 CostBalancerStrategy 类的 findNewSegmentHomeBalancer 方法,其实就是找最合适的 Historical 节点:


@Overridepublic ServerHolder findNewSegmentHomeBalancer(DataSegment proposalSegment, List<ServerHolder> serverHolders){  return chooseBestServer(proposalSegment, serverHolders, true).rhs;}
protected Pair<Double, ServerHolder> chooseBestServer( final DataSegment proposalSegment, final Iterable<ServerHolder> serverHolders, final boolean includeCurrentServer){ Pair<Double, ServerHolder> bestServer = Pair.of(Double.POSITIVE_INFINITY, null);
List<ListenableFuture<Pair<Double, ServerHolder>>> futures = Lists.newArrayList();
for (final ServerHolder server : serverHolders) { futures.add( exec.submit( new Callable<Pair<Double, ServerHolder>>() { @Override public Pair<Double, ServerHolder> call() throws Exception { //计算Cost:候选Segment和Historical节点上所有Segment的cost和 return Pair.of(computeCost(proposalSegment, server, includeCurrentServer), server); } } ) ); }
final ListenableFuture<List<Pair<Double, ServerHolder>>> resultsFuture = Futures.allAsList(futures); final List<Pair<Double, ServerHolder>> bestServers = new ArrayList<>(); bestServers.add(bestServer); try { for (Pair<Double, ServerHolder> server : resultsFuture.get()) { if (server.lhs <= bestServers.get(0).lhs) { if (server.lhs < bestServers.get(0).lhs) { bestServers.clear(); } bestServers.add(server); } }
//Cost最小的如果有多个,随机选择一个 bestServer = bestServers.get(ThreadLocalRandom.current().nextInt(bestServers.size())); } catch (Exception e) { log.makeAlert(e, "Cost Balancer Multithread strategy wasn't able to complete cost computation.").emit(); } return bestServer;}
protected double computeCost(final DataSegment proposalSegment, final ServerHolder server,final boolean includeCurrentServer){ final long proposalSegmentSize = proposalSegment.getSize();
// (optional) Don't include server if it is already serving segment if (!includeCurrentServer && server.isServingSegment(proposalSegment)) { return Double.POSITIVE_INFINITY; }
// Don't calculate cost if the server doesn't have enough space or is loading the segment if (proposalSegmentSize > server.getAvailableSize() || server.isLoadingSegment(proposalSegment)) { return Double.POSITIVE_INFINITY; }
// 初始cost为0 double cost = 0d;
//计算Cost:候选Segment和Historical节点上所有Segment的totalCost cost += computeJointSegmentsCost( proposalSegment, Iterables.filter( server.getServer().getSegments().values(), Predicates.not(Predicates.equalTo(proposalSegment)) ) );
// 需要加上和即将被加载的Segment之间的cost cost += computeJointSegmentsCost(proposalSegment, server.getPeon().getSegmentsToLoad());
// 需要减掉和即将被加载的 Segment 之间的 cost cost -= computeJointSegmentsCost (proposalSegment, server.getPeon().getSegmentsMarkedToDrop());
return cost;}
复制代码


开始计算:


static double computeJointSegmentsCost(final DataSegment segment, final Iterable<DataSegment> segmentSet){  double totalCost = 0;  // 此处需要注意,当新增的Historical节点第一次上线的时候,segmentSet应该是空,所以totalCost=0最小  // 新增节点总会很快的被均衡  for (DataSegment s : segmentSet) {   totalCost += computeJointSegmentsCost(segment, s);  }  return totalCost;}
复制代码


进行一些处理:1)Segment 的 Interval 毫秒转换成 hour;2)先计算了带 lambda 的 x1, y0, y1 的值。


public static double computeJointSegmentsCost(final DataSegment segmentA, final DataSegment segmentB){  final Interval intervalA = segmentA.getInterval();  final Interval intervalB = segmentB.getInterval();
final double t0 = intervalA.getStartMillis(); final double t1 = (intervalA.getEndMillis() - t0) / MILLIS_FACTOR; //x1 final double start = (intervalB.getStartMillis() - t0) / MILLIS_FACTOR; //y0 final double end = (intervalB.getEndMillis() - t0) / MILLIS_FACTOR; //y1
// constant cost-multiplier for segments of the same datsource final double multiplier = segmentA.getDataSource().equals(segmentB.getDataSource()) ? 2.0 : 1.0;
return INV_LAMBDA_SQUARE * intervalCost(t1, start, end) * multiplier;}
复制代码


真正计算 cost 函数的值


public static double intervalCost(double x1, double y0, double y1){  if (x1 == 0 || y1 == y0) {   return 0;  }
// 保证Segment A开始时间小于B的开始时间 if (y0 < 0) { // swap X and Y double tmp = x1; x1 = y1 - y0; y1 = tmp - y0; y0 = -y0; }
if (y0 < x1) { // Segment A和B 时间有重叠的情况,这个分支暂时不分析 ....... } else { // 此处就是计算A和B两个Segment之间的cost,代价计算函数:See https://github.com/druid-io/druid/pull/2972 final double exy0 = FastMath.exp(x1 - y0); final double exy1 = FastMath.exp(x1 - y1); final double ey0 = FastMath.exp(0f - y0); final double ey1 = FastMath.exp(0f - y1);
return (ey1 - ey0) - (exy1 - exy0); }}
复制代码

2.4 代价计算函数分析

现在我们有 2 个 Segment, A 和 B,需要计算他们之间的代价,假设 A 的 start 和 end 时间都是小于 B 的。


2.4.1 Cost 函数介绍

Cost 函数的提出请参考 Druid PR2972(https://github.com/druid-io/druid/pull/2972):


其中 是 Cost 函数的半衰期


为了弄清楚这个 Cost 函数以及影响 Cost 值的因素?我们先使用一些常用的参数配置:


假设 1:Segment A 的 Interval 是 1 小时,即 , 得到:


$x_1 = \frac{(A_{end}-A_{start})log_e2}{24Hour} = \frac{log_e2}{24}$


假设 2:Segment B 的 Interval 也是 1 小时, 得到:


假设 3:Segment B 和 A start 时间相差了 t 个小时,得到:


$y_0 = \frac{tHourlog_e2}{24*Hour} = \frac{t}{24}*log_e2$


在实际的代码中, 的计算已经放到了

2.4.2 计算 Cost 函数


根据假设 2,得到:


继续简化,得到:


根据假设 1,得到:


根据假设 3,得到:


继续简化,得到:


2.4.5 小结

根据上诉 cost 函数化简的结果,当 Segment A 和 B 的 Interval 都是 1 小时的情况下:Segment A 和 B 时间相距越大 Cost 越小,它们就越可能共存在同一个 Historical 节点。这也和本文开始时候提出的时间相邻的 Segment 存储在不同的节点上让查询更快相呼应。

三、总结

Druid 的 balance 机制,主要解决 segments 数据在 history 节点的分布问题,这里的优化主要针对于查询做优化,一般情况下,用户的某一次查询针对的是一个时间范围内的多个 Segment 数据, cost 算法的核心思想是,尽可能打散 Segment 数据分布,这样在一次查询设计多个连续时间 Segment 数据的时候能够利用多台 history server 的并行处理能力,分散系统开销,缩短查询 RT.


2020-03-18 19:54641

评论

发布
暂无评论
发现更多内容

【亲测】pd19虚拟机永久激活教程 兼容m1/m2/intel

Rose

Mac虚拟机 Parallels Desktop 19 pd19虚拟机

作者推荐 | 企业级缓存技术解析,你必须知道的“9“大技术问题与常见误区

洛神灬殇

分布式缓存 技术指南 2024年第二十八篇文章 技术误区 探索分析

详解如何在数仓中搭建细粒度容灾应用

华为云开发者联盟

数据库 后端 华为云 华为云开发者联盟 华为云GaussDB(DWS)

一种轻量分表方案-MyBatis拦截器分表实践|京东零售技术实践

京东零售技术

Java 后端 mybatis

生活中必不可少的就是日历了,万年历 for Mac与其他日历软件有哪些不一样呢?

Rose

日历 Mac日历软件 万年历

油猴Safari浏览器插件:Tampermonkey for Mac中文版

iMac小白

大模型训练、多模态数据处理与融合:从理论到实践

百度开发者中心

人工智能 大模型

「2023 年度中国时序数据应用创新奖」正式公布,路特斯、一汽解放榜上有名

TDengine

tdengine 时序数据库

ps2024安装包永久版 ps2024版本有什么新功能?

Rose

Photoshop 2024破解版 Photoshop 2024直装版 ps2024新功能 ps2024中文

AI 原生时代的云计算

百度Geek说

人工智能 云计算

Nuxt 3.10 正式发布,来看看有功能变化!

伤感汤姆布利柏

Wireshark中的ICMP协议包分析

小齐写代码

面试官:SpringCloudGateway过滤器类型有哪些?

王磊

Java 面试

室内LED显示屏能否改为户外使用?

Dylan

LED显示屏 户外LED显示屏 led显示屏厂家 户内led显示屏

通过ETLCloud CDC构建高效数据管道解决方案

RestCloud

数据同步 ETL CDC 数据集成工具

定制开发:软件公司塑造独特解决方案

天津汇柏科技有限公司

定制软件开发 软件定制开发 软件开发定制

AI大底座:大模型时代的深度解析与实践

百度开发者中心

自然语言处理 语音识别 大模型 AI 大底座

AIGC、AGI、ChatGPT:揭秘人工智能大模型的变革与创新

百度开发者中心

人工智能 大模型 ChatGPT

文心一言 VS 讯飞星火 VS chatgpt (191)-- 算法导论14.2 1题

福大大架构师每日一题

福大大架构师每日一题

数据治理包括哪些内容

悦数图数据库

实力强劲!天翼云斩获多项权威大奖与认证!

天翼云开发者社区

云计算 算力

Druid Segment Balance 及其代价计算函数分析_文化 & 方法_zhaojiandong_InfoQ精选文章