![AIGC领域最大收购:Databricks花费13亿美元买下只有15名研发的小公司!](https://static001.infoq.cn/resource/image/d6/ca/d6a38a73b22792349715665b9a4dbaca.jpg)
智能湖仓开发商 Databricks 正着手以 13 亿美元收购生成式 AI 初创公司 MosaicML,希望帮助自家客户在数据之上构建和部署 AI 模型。值得注意的是,Databricks 本身也是一家初创公司,成立于 2013 年,通过多轮融资筹得 36 亿美元。此次的收购成本当中,包含挽留 MosaicML 员工的相应支出。
大语言模型(LLM)正在 AI 领域掀起新一波浪潮,它能够理解查询、分析多个数据源并用自然语言给出回应和答案,甚至能够输出编程语言。当然,这些模型也可能产生错误或虚构的答案,而且需要大量 GPU 资源才能运行。MosaicML 的主要业务就是帮助客户在小规模系统上运行模型,并使用自己的数据和非公开数据对模型进行训练和微调。
Databricks 公司 CEO Ali Ghodsi 表示,“每个组织都应该从 AI 革命当中受益,并更好地控制数据的使用方式。”
今年 4 月,Databricks 公布了其更新之后的开源 Dolly 大语言模型,标志着公司的 AI 设施已可用于商业应用,且无需大量 GPU 资源或者昂贵的 API。这款聊天机器人能够响应客户查询,根据 Databricks 智能湖仓内的数据给出答案。
MosaicML 的来历
MosaicML 则创立于 2021 年,联合创始人分别为担任 CEO 的 Naveen Rao(前英特尔副总裁兼 AI 产品事业部总经理)和 CTO Hanling Tang(前英特尔 AI 实验室高级总监),员工仅 62 人,其中研究人员(researchers)约为 15 名,“与 Brain 或 Deep Mind 的庞大研究人员队伍相比,我们规模很小”。
MosaicML 公司目前只公开披露过一轮融资,为 6400 万美元,其开源大语言模型基于 MPT-7B 架构,即拥有 70 亿参数且上下文窗口为 6.4 万 token。
![](https://static001.geekbang.org/infoq/0f/0f7d03096c5a00d983258e3c5a26fe7e.png)
Naveen Rao 与 Hanlin Tang
MPT-7B 和最近发布的 MPT-30B 目前下载量已经超过 330 万次。MPT-30B 要比 MPT-7B 更加强大,且性能已经超越初版 GPT-3。MosaicML 表示,MPT-30B 的大小是精心选择的结果,能够轻松部署在单个 GPU 上——可以在 16 位精度对应 1 块 A100-80 GB,也可以在 8 位精度对应 1 块 A100-40 GB。MosaicML 公司指出,其他类似的大语言模型(例如 Falcon-40B)往往拥有更多参数,因此无法在单个数据中心 GPU 上提供服务。而一旦需要的 GPU 超过 2 个,就会增加推理系统的最低实现成本。
![](https://static001.geekbang.org/infoq/af/af9a582d7e51c0c51c2a64baf9363a14.jpeg)
MosaicML 还特别提到 MPT-30B 在编程方面表现优异,“这归功于包括大量代码的预训练数据。我们希望这种文本和编程功能的结合使 MPT-30B 模型成为社区的流行选择。”
MosaicML 是一家美国公司,在旧金山、纽约、帕洛阿尔托和圣迭戈设有办事处。其客户则包括 AI2(艾伦 AI 研究所)、Generally Intelligence、Hippocratic AI、Replit 和 Scatter Labs。
Databricks 表示,MosaicML 的技术将为客户提供一种简单快速的方式,能够在保留对自身数据的控制、安全保护和所有权的前提下,享受到成本低廉的语言模型服务。
与标准方案相比,MosaicML 的优化成果将模型训练速度提升了 2 到 7 倍,而且能够线性扩展。该公司声称,其数十亿参数的模型在几小时内即可完成训练,远低于一般模型长达数天的训练周期。
Naveen Rao 解释道,“我们之所以创办 MosaicML,就是希望解决困难的工程和研究问题,帮助每个人更轻松地进行大规模训练。随着近期掀起的生成式 AI 浪潮,这项工作也成为关注的焦点。我们将与 Databricks 一道,推动天平向着更有利于大多数人的方向倾斜——我们是志同道合的伙伴,同样肩负让研究人员转型为企业家的使命。”
收购意欲何为?
根据 Naveen Rao 的说法,MosaicML 一直致力于降低生成式 AI 的使用成本,从数千万美元降至数十万美元。
生物制药服务公司Syneos Health的首席信息和数字官 Larry Pickett 表示,目前根据专业健康数据训练模型的成本估计为 100 万至 200 万美元。分析师表示,这类“特定领域”模型对公司来说可能比 ChatGPT 更有用,因为它们拥有更多的行业术语和专业知识。但 Pickett 预计,Syneos Health 通过使用较小的预训练模型,“而不是在 OpenAI 拥有的整个数据集之上构建”,花费会大大减少。他说,其中一些模型已经在开源库中可用,例如机器学习初创公司 Hugging Face 提供的库。
“并不是每个人、每个应用程序都需要 GPT-4,”Krishna 说,他指的是 OpenAI 的大型语言模型。他说,大型语言模型正在针对非常具体的应用进行微调,“到那时,它就会变得非常小,可以嵌入到任何手机中。”
但 Databricks 收购 MosaicML 的目的却仍然让很多人感到迷惑,Hacker News 上不少网友一致认为Databricks是在炒作,表示通过新闻稿看不明白 Databricks 要将 LLM 整合来做什么。
虽然现在 Databricks 称公司的主要技术方向为 Lakehouse,但实际上它是由 Apache Spark 创建者创立,因此有人认为其护城河和核心价值主张是云中的 Apache Spark,主要是用 Spark 来处理大规模集群上的数据,其中包括机器学习训练和推理管道,在这种情况下,Databricks 整合 LLM 的价值主张是不够明确的。甚至还有人认为,Databricks 不过是在借当前大模型热度进行炒作,MosaicML 迟早会被注销掉。
![](https://static001.geekbang.org/infoq/8c/8c8622167713515c419ba6661323c883.jpeg)
另外不得不提的是,Databricks 本身成立也仅十年,去年公布年收入刚超过 10 亿美元。Mosaic 上一轮融资的估值为 1.36 亿美元,无论是以股权还是现金收购,13 亿美元的交易价格对 Mosaic 来说都是一个巨大的飞跃。
该交易预计将在第二季度期间完成(截至 7 月 31 日)。
在交易完成后,整个 MosaicML 团队预计都将加入 Databricks。随时间推移,MosaicML 的平台将得到支持、扩展和集成。根据 Databricks 的说法,客户将获得一套统一平台,可以在该平台之上构建、拥有和保护自己的生成式 AI 模型,并使用自有数据做进一步模型训练。
拟议的这项收购案须满足成交惯例,包括遵循相关监管许可。目前可能还有其他生成式 AI 初创公司在与 Databricks 的竞争对手们洽谈收购方案。
参考链接:
https://www.mosaicml.com/blog/mpt-30b
https://twitter.com/mosaicml?lang=en
https://news.ycombinator.com/item?id=36478734
https://www.latent.space/p/mosaic-mpt-7b#details
相关阅读:
Databricks 来搅局了:0 门槛克隆 ChatGPT,完全开源可随意修改商用
评论