写点什么

微软秒删堪比 GPT-4 的开源大模型!研发总部还被爆在北京?官方:我们只是忘了测试

  • 2024-04-22
    北京
  • 本文字数:2652 字

    阅读完需:约 9 分钟

大小:1.25M时长:07:15
微软秒删堪比GPT-4的开源大模型!研发总部还被爆在北京?官方:我们只是忘了测试

因发布前忘了测试,微软删除最新开源大模型

 

上周五,Meta 宣布推出了开源大模型 Llama 3,以其卓越性能引发热议。而在 Llama 3 发布之前,微软也悄悄发布了最新的开源模型 WizardLM-2。

 

颇具戏剧性的是,这款模型在发布仅几个小时后,就被微软下架了,理由是在发布之前忘了进行“毒性测试”。

 

据悉,这款大模型发布于上周一,提供三个版本:8x22B、70B 和 7B,每个版本都旨在满足不同的规模和要求。8x22B 模型是旗舰模型,拥有 1410 亿个参数,使其成为开源社区中最有效的模型之一。

 

微软这次发完模型又删除的行为让很多网友表示困惑,因此微软开发人员在 X 上发布了一份声明解释了下架模型的原因。开发人员遗憾地承认了他们在模型发布过程中由于工作疏忽忘记了进行毒性测试。为了向社区保证迅速采取行动,他们承诺在重新发布模型之前立即进行必要的测试。

 

还有外界消息称,WizardLM-2 背后的研发团队总部位于北京。他们澄清表示:“删除该模型是由于忘记测试,而不是故意试图绕过审查”。

 

我们深感抱歉。

 

距离我们发布模型已经过去一段时间😅,所以现在的我们对于新的发布流程有点生疏,不小心遗漏了模型发布过程中的重要一环——有毒内容测试。

 

目前,我们正在快速补全测试工作……

 


 大语言模型的毒性,是指其创作有害或不当内容的能力。如果在大模型中发现“有毒”内容,不单会影响技术方案的性能表现,更可能在全球各地纷纷对 AI 技术抱谨慎、甚至负面态度的背景下引发轩然大波。相关错误输出可能在互联网上疯狂自传播,甚至招来政府当局的调查。没有哪家公司愿意看到这样灾难性的经营事故。

 

因此,该模型的所有文件均被从 GitHub 和 Hugging Face 上移除,访问相关页面现在会显示 404 错误。

 

这款大模型是在 Apache 2.0 协议下发布的,在 repo 被移除之前,许多人已经下载了模型权重。但有细心的 Hacker News 用户还是将其发布地址备份保存了下来(地址如下):

 

https://huggingface.co/dreamgen/WizardLM-2-7B

https://huggingface.co/dreamgen/WizardLM-2-8x22B

 

甚至在下架之前,部分用户已经在其他基准测试中对该模型进行了评估。那么,这款大模型具有哪些功能?与其他大模型相比性能如何?

WizardLM-2“开箱”评测

WizardLM 是一套基于指令的模型,构建于 Meta 的 Llama 基础之上,属于研究人员使用生成的指令数据对 Llama 微调得到的产物。

 

值得注意的是,WizardLM-2 基于混合专家 (MoE) 架构开发,利用完全由人工智能驱动的综合训练系统,增强其处理复杂、多语言对话和执行高级推理的能力。该系统支持模型在各个领域(包括写作、编码、数学等)提供精致且与上下文相关的响应的能力。

 

该模型的第二个版本 WizardLM-2 是在 Mistral AI 的 Mixtral 8x22B 模型基础之上构建而成,并利用合成数据进行了微调。该模型家族共包含三大领先型号:WizardLM-2 8x22B、70B 与 7B。

与各领先的专有大语言模型相比,这些模型表现出极具竞争力的性能水平。

 

WizardLM-2 8x22B 是其中最先进的模型,仅略微落后于 GPT-4-1106-preview。70B 在相同体量下达到了顶级性能,而 7B 版本则速度最快,甚至拥有与参数规模 10 倍于它的领先模型相当的性能表现

 

该模型利用 AI 模型生成的合成数据训练而成。微软公司在 X 上发帖指出:

 

随着天然存在的人类数据逐步被大语言模型训练用尽,我们坚信:AI 精心创造的数据与 AI 分步监督的模型将是通往更强 AI 成果的唯一途径。因此,我们构建了一套完全由 AI 驱动的合成训练系统以增强 WizardLM-2。



WizardLM 2 的训练方式(来源:模型启动页面,现已删除)

 

在 MT-Bench 框架等基准评估中,WizardLM-2 展现出具有竞争力的性能,甚至可以与最先进的专有模型相媲美。它在现实场景中的应用较为广泛,从增强对话式人工智能到支持业务环境中的复杂决策流程。

 


将 WizardLM2 基准与 GPT-4–1106-preview、Command R Plus、Mistral Large、Qwen 1.5、Straling LM 7B 进行比较。(来源:模型启动页面,现已删除)

 

在 MT-Bench 中将 WizardLM-2 与 GPT-4-Turbo 和 Claude-3 等最先进的专有大模型相比,WizardLM-2 8x22B 仍然具备极富竞争力的性能。同时,7B 与 70B 也均成为同等参数规模之下性能最强的大语言模型。

最近几年,微软的步子迈得太大了

 

Hugging Face 及其首席执行官 Clément Delangue 对删除表示失望,并强调了 WizardLM 的开源模型对其平台的重大影响。他们正在积极寻求与 Microsoft 的解决方案,以满足社区需求。

 

随着故事的展开,人们的注意力转向了微软对负责任的 AI 实践的承诺。尽管该公司拒绝直接置评,但更新后的负责任人工智能标准一般要求的发布强调了其对道德人工智能开发的奉献精神,强调需要减少人工智能输出中的偏见和差异。

 

实际上,当前几年还没有在 AI 领域展现出强大的统治力时,微软时常因产品的发布令人失望,甚至被贴上创新停滞和顶尖人才流失的标签。

 

快进到 2024 年,微软已然成为了全世界最有价值的科技巨头之一。在首席执行官萨蒂亚·纳德拉 (Satya Nadella) 的领导下,微软股价在 10 年内飙升了 1000% 以上。一月份,该公司的市值达到 3 万亿美元,超过了法国的 GDP 总和。

 

能够让微软卷土重来的核心是人工智能。微软在 Azure 云计算平台、Office 生产力套件和 Bing 搜索引擎中嵌入了人工智能。而这一转变的关键事件是微软投资了 OpenAI,并迅速其借助先进的人工智能技术成为了生成式 AI 时代的先行者。

 

微软与 OpenAI 的合作始于 2017 年,当初这家备受瞩目的初创公司在云计算上花费了大约 790 万美元——占其职能支出的四分之一,这让两者有了初步的接触。

 

到 2019 年,微软已经成为 AI 实验室的“独家”云计算提供商。在向这家初创公司新投资 10 亿美元后,微软成为 OpenAI 商业化的首选合作伙伴。

 

微软很快将 OpenAI 大语言模型 (LLM) 集成到 Azure 云服务中。客户使用该软件实现各种应用程序功能,从聊天机器人和内容生成到翻译和个性化营销。

 

该服务增长迅速。今年第二季度,微软报告称,Azure OpenAI 的用户数量较前 12 个月增长了 50%。纳德拉表示,目前已有超过 53,000 名客户使用该服务,其中包括“一半以上”的财富 500 强企业。可以说,OpenAI 在微软的商业帝国复兴中发挥了关键作用。

 

但借助 OpenAI 这一外力重新崛起的老牌巨头想要依靠自身实力继续保持领先,并且能在激烈的竞争中始终处于有利位置,却是件很难的事情。

 

参考链接:

https://blog.stackademic.com/beyond-gpt-4-exploring-microsofts-wizardlm-2-2863e432f291

https://favtutor.com/articles/wizardlm-2-benchmarks/

https://www.teiss.co.uk/news/microsoft-pulls-wizardlm-2-ai-model-due-to-missed-toxicity-testing-13873

2024-04-22 17:384852
用户头像
李冬梅 加V:busulishang4668

发布了 1003 篇内容, 共 617.5 次阅读, 收获喜欢 1178 次。

关注

评论

发布
暂无评论
发现更多内容

Python如何接收键盘按键

霍格沃兹测试开发学社

CloudIDE就是未来编程的新风向

Tp_jh

产品 编程语言 研发效能 企业动态 云端开发

Python教程:生成Excel并更改表头

霍格沃兹测试开发学社

如何快速运用iPaas与协议进行接口对接

RestCloud

ipaas 接口对接 协议对接

万界星空科技MES系统在智能生产中的重要作用

万界星空科技

工业互联网 制造业 智能制造 mes 万界星空科技

助力客户效益增长近10倍!即构宝藏算法是如何做到的?

ZEGO即构

人工智能 AI 算法 直播技术 虚拟背景

订阅GPT4之前必须了解的十件事情-【新手向】ChatGPT入门指南

蓉蓉

openai ChatGPT GPT-4

Covalent Network借助大规模的历史Web3数据集,推动人工智能发展

股市老人

阿里云 SelectDB 联合 DTS ,一键实现 TP 数据实时入仓

SelectDB

大数据 阿里云 云数据库 数据迁移 #数据库

使用Python爬取豆瓣电影影评:从数据收集到情感分析

霍格沃兹测试开发学社

Vue路由守卫:是破解安全漏洞的关键还是新的安全风险?

测吧(北京)科技有限公司

测试

跨平台应用程序开发如何选择框架

雪奈椰子

1688API接口推荐:1688口令转换真实链接接口 审核中

tbapi

1688API接口 1688口令接口 1688淘口令接口

看你能解锁哪些新身份?OpenHarmony大使、MVP、金码达人在线申报

OpenHarmony开发者

Python教程:如何向Word中添加表格

霍格沃兹测试开发学社

Axios拦截器:是前端优化的利器还是不可忽视的安全漏洞源?

测吧(北京)科技有限公司

测试

云手机在海外电商中的应用优势

Ogcloud

云手机 海外云手机 云手机海外版 电商云手机

PHP 服务实现监控可观测性最佳实践

观测云

php

直播预约丨《袋鼠云大数据实操指南》No.1:从理论到实践,离线开发全流程解析

袋鼠云数栈

大数据 离线开发 离线开发离线计算 数据实操

安全护卫联手:JWT鉴权与Vue路由守卫,确保敏感资源访问权限完全掌控

测吧(北京)科技有限公司

测试

Pandas:如何让你的代码性能飙升

快乐非自愿限量之名

pandas 代码 数据可视化

云手机为企业出海提供多元化解决方案

Ogcloud

云手机 海外云手机 云手机海外版 国外云手机 跨境云手机

架构实战营 - 模块三作业

满心

架构实战营

那些放弃Jira的企业都找了哪些替代工具?盘点15款

爱吃小舅的鱼

项目管理 Jira 项目管理工具

低代码开发与数据可视化

不在线第一只蜗牛

低代码 数据可视化

Axios拦截器:优化前后端交互的利器还是纸老虎?

测吧(北京)科技有限公司

测试

低代码与前端开发架构:重塑软件开发的未来

快乐非自愿限量之名

前端开发 前端架构 低代码

海外社交营销为什么用云手机?不用普通手机?

Ogcloud

云手机 海外云手机 云手机海外版 国外云手机 跨境云手机

探索ORM技术:如何轻松管理数据库并提高操作效率?

测吧(北京)科技有限公司

测试

打造安全壁垒:JWT鉴权提升应用的访问安全性

测吧(北京)科技有限公司

测试

Flask蓝图与ORM技术:神奇的组合还是无用功?

测吧(北京)科技有限公司

测试

微软秒删堪比GPT-4的开源大模型!研发总部还被爆在北京?官方:我们只是忘了测试_生成式 AI_李冬梅_InfoQ精选文章